Loop Equations for Gromov-Witten Invariant of P¹

We show that non-stationary Gromov-Witten invariants of P¹ can be extracted from open periods of the Eynard-Orantin topological recursion correlators ωg,ₙ whose Laurent series expansion at ∞ compute the stationary invariants. To do so, we overcome the technical difficulties to global loop equations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2019
Hauptverfasser: Borot, G., Norbury, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210234
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Loop Equations for Gromov-Witten Invariant of P¹ / G. Borot, P. Norbury // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210234
record_format dspace
spelling Borot, G.
Norbury, P.
2025-12-04T13:05:43Z
2019
Loop Equations for Gromov-Witten Invariant of P¹ / G. Borot, P. Norbury // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 32G15; 14D23; 53D45
arXiv: 1905.01890
https://nasplib.isofts.kiev.ua/handle/123456789/210234
https://doi.org/10.3842/SIGMA.2019.061
We show that non-stationary Gromov-Witten invariants of P¹ can be extracted from open periods of the Eynard-Orantin topological recursion correlators ωg,ₙ whose Laurent series expansion at ∞ compute the stationary invariants. To do so, we overcome the technical difficulties to global loop equations for the spectral x(z)=z+1/z and y(z)=lnz from the local loop equations satisfied by the ωg,ₙ, and check these global loop equations are equivalent to the Virasoro constraints that are known to govern the full Gromov-Witten theory of P¹.
This work was initiated during a visit of G.B. to the University of Melbourne, supported by P. Zinn-Justin, whom he thanks for hospitality. G.B. also thanks Hiroshi Iritani for discussions on mirror symmetry, and acknowledges the support of the Max-Planck-Gesellschaft. Part of this work was carried out during a visit of P.N. to Ludwig-Maximilians-Universität which he thanks its hospitality. P.N. is supported by the Australian Research Council grants DP170102028 and DP180103891.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Loop Equations for Gromov-Witten Invariant of P¹
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Loop Equations for Gromov-Witten Invariant of P¹
spellingShingle Loop Equations for Gromov-Witten Invariant of P¹
Borot, G.
Norbury, P.
title_short Loop Equations for Gromov-Witten Invariant of P¹
title_full Loop Equations for Gromov-Witten Invariant of P¹
title_fullStr Loop Equations for Gromov-Witten Invariant of P¹
title_full_unstemmed Loop Equations for Gromov-Witten Invariant of P¹
title_sort loop equations for gromov-witten invariant of p¹
author Borot, G.
Norbury, P.
author_facet Borot, G.
Norbury, P.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show that non-stationary Gromov-Witten invariants of P¹ can be extracted from open periods of the Eynard-Orantin topological recursion correlators ωg,ₙ whose Laurent series expansion at ∞ compute the stationary invariants. To do so, we overcome the technical difficulties to global loop equations for the spectral x(z)=z+1/z and y(z)=lnz from the local loop equations satisfied by the ωg,ₙ, and check these global loop equations are equivalent to the Virasoro constraints that are known to govern the full Gromov-Witten theory of P¹.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210234
citation_txt Loop Equations for Gromov-Witten Invariant of P¹ / G. Borot, P. Norbury // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT borotg loopequationsforgromovwitteninvariantofp1
AT norburyp loopequationsforgromovwitteninvariantofp1
first_indexed 2025-12-07T21:24:50Z
last_indexed 2025-12-07T21:24:50Z
_version_ 1850886262380036096