Ricci Flow and Volume Renormalizability

With respect to any special boundary defining function, a conformally compact asymptotically hyperbolic metric has an asymptotic expansion near its conformal infinity. If this expansion is even to a certain order and satisfies one extra condition, then it is possible to define its renormalized volum...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автори: Bahuaud, E., Mazzeo, R., Woolgar, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210238
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ricci Flow and Volume Renormalizability / E. Bahuaud, R. Mazzeo, E. Woolgar // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:With respect to any special boundary defining function, a conformally compact asymptotically hyperbolic metric has an asymptotic expansion near its conformal infinity. If this expansion is even to a certain order and satisfies one extra condition, then it is possible to define its renormalized volume and show that it is independent of choices that preserve this evenness structure. We prove that such expansions are preserved under normalized Ricci flow. We also study the variation of curvature functionals in this setting, and as one application, obtain the variation formula d/dtRenV(Mⁿ,g(t)) = −R∫Mⁿ(S(g(t)) + n(n−1))dVg(t), where S(g(t)) is the scalar curvature for the evolving metric g(t), and R∫(⋅)dVg is Riesz renormalization. This extends our earlier work to a broader class of metrics.
ISSN:1815-0659