Invariant Nijenhuis Tensors and Integrable Geodesic Flows
We study invariant Nijenhuis (1,1)-tensors on a homogeneous space G/K of a reductive Lie group G from the point of view of integrability of a Hamiltonian system of differential equations with the G-invariant Hamiltonian function on the cotangent bundle T*(G/K). Such a tensor induces an invariant Poi...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2019 |
| Main Authors: | Lompert, K., Panasyuk, A. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2019
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/210239 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Invariant Nijenhuis Tensors and Integrable Geodesic Flows / K. Lompert, A. Panasyuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 33 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Nijenhuis Integrability for Killing Tensors
by: Schöbel, K.
Published: (2016) -
Geodesic completeness of the left-invariant metrics on RHn
by: S. Vukmirovic, et al.
Published: (2020) -
Extremality of geodesic and criteria for determination of universal multipoint invariants
by: D. O. Dziakovych
Published: (2019) -
On the Darboux-Nijenhuis variables for the open Toda lattice
by: Grigoryev, Y.A., et al.
Published: (2006) -
A Recursive Scheme of First Integrals of the Geodesic Flow of a Finsler Manifold
by: Sarlet, W.
Published: (2007)