Orthogonal Dualities of Markov Processes and Unitary Symmetries

We study self-duality for interacting particle systems, where the particles move as continuous-time random walkers having either exclusion interaction or inclusion interaction. We show that orthogonal self-dualities arise from unitary symmetries of the Markov generator. For these symmetries, we prov...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автори: Carinci, G., Franceschini, C., Giardinà, C., Groenevelt, W., Redig, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210242
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Orthogonal Dualities of Markov Processes and Unitary Symmetries / G. Carinci, C. Franceschini, C. Giardinà, W. Groenevelt, F. Redig // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210242
record_format dspace
spelling Carinci, G.
Franceschini, C.
Giardinà, C.
Groenevelt, W.
Redig, F.
2025-12-04T13:09:43Z
2019
Orthogonal Dualities of Markov Processes and Unitary Symmetries / G. Carinci, C. Franceschini, C. Giardinà, W. Groenevelt, F. Redig // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 32 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 60J25; 82C22; 22E60
arXiv: 1812.08553
https://nasplib.isofts.kiev.ua/handle/123456789/210242
https://doi.org/10.3842/SIGMA.2019.053
We study self-duality for interacting particle systems, where the particles move as continuous-time random walkers having either exclusion interaction or inclusion interaction. We show that orthogonal self-dualities arise from unitary symmetries of the Markov generator. For these symmetries, we provide two equivalent expressions that are related by the Baker-Campbell-Hausdorff formula. The first expression is the exponential of an anti-Hermitian operator and thus is unitary by inspection; the second expression is factorized into three terms and is proved to be unitary by using generating functions. The factorized form is also obtained by using an independent approach based on scalar products, which is a new method of independent interest that we introduce to derive (bi)orthogonal duality functions from non-orthogonal duality functions.
We thank the anonymous referees for their input, which helped to improve the paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Orthogonal Dualities of Markov Processes and Unitary Symmetries
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Orthogonal Dualities of Markov Processes and Unitary Symmetries
spellingShingle Orthogonal Dualities of Markov Processes and Unitary Symmetries
Carinci, G.
Franceschini, C.
Giardinà, C.
Groenevelt, W.
Redig, F.
title_short Orthogonal Dualities of Markov Processes and Unitary Symmetries
title_full Orthogonal Dualities of Markov Processes and Unitary Symmetries
title_fullStr Orthogonal Dualities of Markov Processes and Unitary Symmetries
title_full_unstemmed Orthogonal Dualities of Markov Processes and Unitary Symmetries
title_sort orthogonal dualities of markov processes and unitary symmetries
author Carinci, G.
Franceschini, C.
Giardinà, C.
Groenevelt, W.
Redig, F.
author_facet Carinci, G.
Franceschini, C.
Giardinà, C.
Groenevelt, W.
Redig, F.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study self-duality for interacting particle systems, where the particles move as continuous-time random walkers having either exclusion interaction or inclusion interaction. We show that orthogonal self-dualities arise from unitary symmetries of the Markov generator. For these symmetries, we provide two equivalent expressions that are related by the Baker-Campbell-Hausdorff formula. The first expression is the exponential of an anti-Hermitian operator and thus is unitary by inspection; the second expression is factorized into three terms and is proved to be unitary by using generating functions. The factorized form is also obtained by using an independent approach based on scalar products, which is a new method of independent interest that we introduce to derive (bi)orthogonal duality functions from non-orthogonal duality functions.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210242
citation_txt Orthogonal Dualities of Markov Processes and Unitary Symmetries / G. Carinci, C. Franceschini, C. Giardinà, W. Groenevelt, F. Redig // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT carincig orthogonaldualitiesofmarkovprocessesandunitarysymmetries
AT franceschinic orthogonaldualitiesofmarkovprocessesandunitarysymmetries
AT giardinac orthogonaldualitiesofmarkovprocessesandunitarysymmetries
AT groeneveltw orthogonaldualitiesofmarkovprocessesandunitarysymmetries
AT redigf orthogonaldualitiesofmarkovprocessesandunitarysymmetries
first_indexed 2025-12-07T21:24:52Z
last_indexed 2025-12-07T21:24:52Z
_version_ 1850886263599529985