De Rham 2-Cohomology of Real Flag Manifolds

Let FΘ = G/PΘ be a flag manifold associated to a non-compact real simple Lie group G and the parabolic subgroup PΘ. This is a closed subgroup of G determined by a subset Θ of simple restricted roots of g = Lie(G). This paper computes the second de Rham cohomology group of FΘ. We prove that it is zer...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2019
Main Authors: del Barco, V., San Martín, L.A.B.
Format: Article
Language:English
Published: Інститут математики НАН України 2019
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/210244
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:De Rham 2-Cohomology of Real Flag Manifolds / V. del Barco, L.A.B. San Martin // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210244
record_format dspace
spelling del Barco, V.
San Martín, L.A.B.
2025-12-04T13:11:30Z
2019
De Rham 2-Cohomology of Real Flag Manifolds / V. del Barco, L.A.B. San Martin // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 12 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 57T15; 14M15
arXiv: 1811.07854
https://nasplib.isofts.kiev.ua/handle/123456789/210244
https://doi.org/10.3842/SIGMA.2019.051
Let FΘ = G/PΘ be a flag manifold associated to a non-compact real simple Lie group G and the parabolic subgroup PΘ. This is a closed subgroup of G determined by a subset Θ of simple restricted roots of g = Lie(G). This paper computes the second de Rham cohomology group of FΘ. We prove that it is zero in general, with some rare exceptions. When it is non-zero, we give a basis of H²(FΘ, ℝ) through the Weil construction of closed 2-forms as characteristic forms of principal fiber bundles. The starting point is the computation of the second homology group of FΘ with coefficients in a ring R.
V. del Barco supported by FAPESP grants 2015/23896-5 and 2017/13725-4. L.A.B. San Martin supported by CNPq grant 476024/2012-9 and FAPESP grant 2012/18780-0. The authors express their gratitude to Lonardo Rabelo for careful reading of a previous version of this manuscript and his useful suggestions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
De Rham 2-Cohomology of Real Flag Manifolds
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title De Rham 2-Cohomology of Real Flag Manifolds
spellingShingle De Rham 2-Cohomology of Real Flag Manifolds
del Barco, V.
San Martín, L.A.B.
title_short De Rham 2-Cohomology of Real Flag Manifolds
title_full De Rham 2-Cohomology of Real Flag Manifolds
title_fullStr De Rham 2-Cohomology of Real Flag Manifolds
title_full_unstemmed De Rham 2-Cohomology of Real Flag Manifolds
title_sort de rham 2-cohomology of real flag manifolds
author del Barco, V.
San Martín, L.A.B.
author_facet del Barco, V.
San Martín, L.A.B.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Let FΘ = G/PΘ be a flag manifold associated to a non-compact real simple Lie group G and the parabolic subgroup PΘ. This is a closed subgroup of G determined by a subset Θ of simple restricted roots of g = Lie(G). This paper computes the second de Rham cohomology group of FΘ. We prove that it is zero in general, with some rare exceptions. When it is non-zero, we give a basis of H²(FΘ, ℝ) through the Weil construction of closed 2-forms as characteristic forms of principal fiber bundles. The starting point is the computation of the second homology group of FΘ with coefficients in a ring R.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210244
citation_txt De Rham 2-Cohomology of Real Flag Manifolds / V. del Barco, L.A.B. San Martin // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT delbarcov derham2cohomologyofrealflagmanifolds
AT sanmartinlab derham2cohomologyofrealflagmanifolds
first_indexed 2025-12-07T21:24:53Z
last_indexed 2025-12-07T21:24:53Z
_version_ 1850886264570511360