Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra
The higher rank Askey-Wilson algebra was recently constructed in the n-fold tensor product of Uq(sl₂). In this paper, we prove a class of identities inside this algebra, which generalize the defining relations of the rank-one Askey-Wilson algebra. We extend the known construction algorithm by severa...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2019 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210289 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra / H. De Clercq // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 33 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | The higher rank Askey-Wilson algebra was recently constructed in the n-fold tensor product of Uq(sl₂). In this paper, we prove a class of identities inside this algebra, which generalize the defining relations of the rank-one Askey-Wilson algebra. We extend the known construction algorithm by several equivalent methods, using a novel coaction. These allow for simplifying calculations significantly. At the same time, this provides proof of the corresponding relations for the higher rank q-Bannai-Ito algebra.
|
|---|---|
| ISSN: | 1815-0659 |