Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra

The higher rank Askey-Wilson algebra was recently constructed in the n-fold tensor product of Uq(sl₂). In this paper, we prove a class of identities inside this algebra, which generalize the defining relations of the rank-one Askey-Wilson algebra. We extend the known construction algorithm by severa...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автор: De Clercq, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210289
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra / H. De Clercq // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210289
record_format dspace
spelling De Clercq, H.
2025-12-05T09:22:16Z
2019
Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra / H. De Clercq // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 33 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 16T05; 16T15; 17B37; 81R50
arXiv: 1908.11654
https://nasplib.isofts.kiev.ua/handle/123456789/210289
https://doi.org/10.3842/SIGMA.2019.099
The higher rank Askey-Wilson algebra was recently constructed in the n-fold tensor product of Uq(sl₂). In this paper, we prove a class of identities inside this algebra, which generalize the defining relations of the rank-one Askey-Wilson algebra. We extend the known construction algorithm by several equivalent methods, using a novel coaction. These allow for simplifying calculations significantly. At the same time, this provides proof of the corresponding relations for the higher rank q-Bannai-Ito algebra.
HDC is a PhD Fellow of the Research Foundation Flanders (FWO). This work was also supported by FWO Grant EOS 30889451. The author wishes to thank the anonymous referees for their valuable suggestions and comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra
spellingShingle Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra
De Clercq, H.
title_short Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra
title_full Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra
title_fullStr Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra
title_full_unstemmed Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra
title_sort higher rank relations for the askey-wilson and q-bannai-ito algebra
author De Clercq, H.
author_facet De Clercq, H.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The higher rank Askey-Wilson algebra was recently constructed in the n-fold tensor product of Uq(sl₂). In this paper, we prove a class of identities inside this algebra, which generalize the defining relations of the rank-one Askey-Wilson algebra. We extend the known construction algorithm by several equivalent methods, using a novel coaction. These allow for simplifying calculations significantly. At the same time, this provides proof of the corresponding relations for the higher rank q-Bannai-Ito algebra.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210289
citation_txt Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra / H. De Clercq // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 33 назв. — англ.
work_keys_str_mv AT declercqh higherrankrelationsfortheaskeywilsonandqbannaiitoalgebra
first_indexed 2025-12-07T21:25:02Z
last_indexed 2025-12-07T21:25:02Z
_version_ 1850886274555052032