The Real Jacobi Group Revisited

The real Jacobi group GJ₁(ℝ), defined as the semi-direct product of the group SL(2, ℝ) with the Heisenberg group H₁, is embedded in a 4×4 matrix realisation of the group Sp(2, ℝ). The left-invariant one-forms on GJ₁(ℝ) and their dual orthogonal left-invariant vector fields are calculated in the S-co...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автор: Berceanu, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210292
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Real Jacobi Group Revisited / S. Berceanu // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 113 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The real Jacobi group GJ₁(ℝ), defined as the semi-direct product of the group SL(2, ℝ) with the Heisenberg group H₁, is embedded in a 4×4 matrix realisation of the group Sp(2, ℝ). The left-invariant one-forms on GJ₁(ℝ) and their dual orthogonal left-invariant vector fields are calculated in the S-coordinates (x,y,θ,p,q,κ), and a left-invariant metric depending on 4 parameters (α,β,γ,δ) is obtained. An invariant metric depending on (α,β) in the variables (x,y,θ) on the Sasaki manifold SL(2, ℝ) is presented. The well-known Kähler balanced metric in the variables (x,y,p,q) of the four-dimensional Siegel-Jacobi upper half-plane XJ₁=GJ₁(ℝ)SO(2)×ℝ≈X₁×ℝ² depending on (α,γ) is written down as a sum of the squares of four invariant one-forms, where X₁ denotes the Siegel upper half-plane. The left-invariant metric in the variables (x,y,p,q,κ) depending on (α,γ,δ) of a five-dimensional manifold X~J₁=GJ₁(ℝ)SO(2)≈X₁×ℝ³ is determined.
ISSN:1815-0659