The Real Jacobi Group Revisited

The real Jacobi group GJ₁(ℝ), defined as the semi-direct product of the group SL(2, ℝ) with the Heisenberg group H₁, is embedded in a 4×4 matrix realisation of the group Sp(2, ℝ). The left-invariant one-forms on GJ₁(ℝ) and their dual orthogonal left-invariant vector fields are calculated in the S-co...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автор: Berceanu, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210292
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Real Jacobi Group Revisited / S. Berceanu // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 113 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210292
record_format dspace
spelling Berceanu, S.
2025-12-05T09:22:52Z
2019
The Real Jacobi Group Revisited / S. Berceanu // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 113 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 32F45; 32Q15; 53C25; 53C22
arXiv: 1903.10721
https://nasplib.isofts.kiev.ua/handle/123456789/210292
https://doi.org/10.3842/SIGMA.2019.096
The real Jacobi group GJ₁(ℝ), defined as the semi-direct product of the group SL(2, ℝ) with the Heisenberg group H₁, is embedded in a 4×4 matrix realisation of the group Sp(2, ℝ). The left-invariant one-forms on GJ₁(ℝ) and their dual orthogonal left-invariant vector fields are calculated in the S-coordinates (x,y,θ,p,q,κ), and a left-invariant metric depending on 4 parameters (α,β,γ,δ) is obtained. An invariant metric depending on (α,β) in the variables (x,y,θ) on the Sasaki manifold SL(2, ℝ) is presented. The well-known Kähler balanced metric in the variables (x,y,p,q) of the four-dimensional Siegel-Jacobi upper half-plane XJ₁=GJ₁(ℝ)SO(2)×ℝ≈X₁×ℝ² depending on (α,γ) is written down as a sum of the squares of four invariant one-forms, where X₁ denotes the Siegel upper half-plane. The left-invariant metric in the variables (x,y,p,q,κ) depending on (α,γ,δ) of a five-dimensional manifold X~J₁=GJ₁(ℝ)SO(2)≈X₁×ℝ³ is determined.
This research was conducted in the framework of the ANCS project programs PN 16 42 01 01/2016, 18 09 01 01/2018, 19 06 01 01/2019. I had the idea to apply Lemma A.19 after the talk of Professor Zdaněk Dušek at the 1st International Conference on Differential Geometry (April 11-15, 2016, Fez, Morocco). I am grateful to Professor Zdanˇek for his correspondence in the first stages of the preparation of this paper. I would also like to thank Professor Mohamed Tahar Kadaoul Abbassi for the hospitality during the Fez conference and the partial financial support. I would like to thank Professor G.W. Gibbons for answering an email. I am grateful to Professor M. Visinescu for introducing me to the world of Sasaki manifolds. Thanks are also addressed to Professor R.D. Grigore for suggestions on some calculations. I am grateful to professors Dmitri Alekseevsky and Vicente Cortés for their criticism and suggestions on the first version of this paper. The author thanks the unknown referees who, through their recommendations, contributed to the improvement of the text of the paper. The author thanks Drs. I. Berceanu and M. Babalic for help in the preparation of the text.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Real Jacobi Group Revisited
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Real Jacobi Group Revisited
spellingShingle The Real Jacobi Group Revisited
Berceanu, S.
title_short The Real Jacobi Group Revisited
title_full The Real Jacobi Group Revisited
title_fullStr The Real Jacobi Group Revisited
title_full_unstemmed The Real Jacobi Group Revisited
title_sort real jacobi group revisited
author Berceanu, S.
author_facet Berceanu, S.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The real Jacobi group GJ₁(ℝ), defined as the semi-direct product of the group SL(2, ℝ) with the Heisenberg group H₁, is embedded in a 4×4 matrix realisation of the group Sp(2, ℝ). The left-invariant one-forms on GJ₁(ℝ) and their dual orthogonal left-invariant vector fields are calculated in the S-coordinates (x,y,θ,p,q,κ), and a left-invariant metric depending on 4 parameters (α,β,γ,δ) is obtained. An invariant metric depending on (α,β) in the variables (x,y,θ) on the Sasaki manifold SL(2, ℝ) is presented. The well-known Kähler balanced metric in the variables (x,y,p,q) of the four-dimensional Siegel-Jacobi upper half-plane XJ₁=GJ₁(ℝ)SO(2)×ℝ≈X₁×ℝ² depending on (α,γ) is written down as a sum of the squares of four invariant one-forms, where X₁ denotes the Siegel upper half-plane. The left-invariant metric in the variables (x,y,p,q,κ) depending on (α,γ,δ) of a five-dimensional manifold X~J₁=GJ₁(ℝ)SO(2)≈X₁×ℝ³ is determined.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210292
citation_txt The Real Jacobi Group Revisited / S. Berceanu // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 113 назв. — англ.
work_keys_str_mv AT berceanus therealjacobigrouprevisited
AT berceanus realjacobigrouprevisited
first_indexed 2025-12-07T21:25:02Z
last_indexed 2025-12-07T21:25:02Z
_version_ 1850886274647326720