Cohomology of Restricted Filiform Lie Algebras mλ₂(p)

For the p-dimensional filiform Lie algebra m₂(p) over a field F of prime characteristic p≥5 with nonzero Lie brackets [e₁,eᵢ]=eᵢ₊₁ for 1 < i < p and [e₂,eᵢ]=eᵢ₊₂ for 2 < i < p − 1, we show that there is a family mλ₂(p) of restricted Lie algebra structures parameterized by elements λ ∈ 𝔽ᵖ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2019
Hauptverfasser: Evans, T.J., Fialowski, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210293
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Cohomology of Restricted Filiform Lie Algebras mλ₂(p) / T.J. Evans, A. Fialowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210293
record_format dspace
spelling Evans, T.J.
Fialowski, A.
2025-12-05T09:23:05Z
2019
Cohomology of Restricted Filiform Lie Algebras mλ₂(p) / T.J. Evans, A. Fialowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 15 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B50; 17B56
arXiv: 1901.07532
https://nasplib.isofts.kiev.ua/handle/123456789/210293
https://doi.org/10.3842/SIGMA.2019.095
For the p-dimensional filiform Lie algebra m₂(p) over a field F of prime characteristic p≥5 with nonzero Lie brackets [e₁,eᵢ]=eᵢ₊₁ for 1 < i < p and [e₂,eᵢ]=eᵢ₊₂ for 2 < i < p − 1, we show that there is a family mλ₂(p) of restricted Lie algebra structures parameterized by elements λ ∈ 𝔽ᵖ. We explicitly describe bases for the ordinary and restricted 1- and 2-cohomology spaces with trivial coefficients, and give formulas for the bracket and [p]-operations in the corresponding restricted one-dimensional central extensions.
The authors are grateful to Dmitry Fuchs for fruitful conversations and the referees whose comments greatly improved the exposition of this paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Cohomology of Restricted Filiform Lie Algebras mλ₂(p)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Cohomology of Restricted Filiform Lie Algebras mλ₂(p)
spellingShingle Cohomology of Restricted Filiform Lie Algebras mλ₂(p)
Evans, T.J.
Fialowski, A.
title_short Cohomology of Restricted Filiform Lie Algebras mλ₂(p)
title_full Cohomology of Restricted Filiform Lie Algebras mλ₂(p)
title_fullStr Cohomology of Restricted Filiform Lie Algebras mλ₂(p)
title_full_unstemmed Cohomology of Restricted Filiform Lie Algebras mλ₂(p)
title_sort cohomology of restricted filiform lie algebras mλ₂(p)
author Evans, T.J.
Fialowski, A.
author_facet Evans, T.J.
Fialowski, A.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description For the p-dimensional filiform Lie algebra m₂(p) over a field F of prime characteristic p≥5 with nonzero Lie brackets [e₁,eᵢ]=eᵢ₊₁ for 1 < i < p and [e₂,eᵢ]=eᵢ₊₂ for 2 < i < p − 1, we show that there is a family mλ₂(p) of restricted Lie algebra structures parameterized by elements λ ∈ 𝔽ᵖ. We explicitly describe bases for the ordinary and restricted 1- and 2-cohomology spaces with trivial coefficients, and give formulas for the bracket and [p]-operations in the corresponding restricted one-dimensional central extensions.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210293
citation_txt Cohomology of Restricted Filiform Lie Algebras mλ₂(p) / T.J. Evans, A. Fialowski // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT evanstj cohomologyofrestrictedfiliformliealgebrasmλ2p
AT fialowskia cohomologyofrestrictedfiliformliealgebrasmλ2p
first_indexed 2025-12-07T21:25:03Z
last_indexed 2025-12-07T21:25:03Z
_version_ 1850886275556442112