Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety

Let X be a holomorphic symplectic variety with a torus T action and a finite fixed point set of cardinality k. We assume that an elliptic stable envelope exists for X. Let AI, J=Stab(J)|I be the k×k matrix of restrictions of the elliptic stable envelopes of X to the fixed points. The entries of this...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автори: Rimányi, R., Smirnov, A., Varchenko, A., Zhou, Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210295
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety / R. Rimányi, A. Smirnov, A. Varchenko, Z. Zhou // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 42 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210295
record_format dspace
spelling Rimányi, R.
Smirnov, A.
Varchenko, A.
Zhou, Z.
2025-12-05T09:23:41Z
2019
Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety / R. Rimányi, A. Smirnov, A. Varchenko, Z. Zhou // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 42 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B37; 55N34; 32C35; 55R40
arXiv: 1906.00134
https://nasplib.isofts.kiev.ua/handle/123456789/210295
https://doi.org/10.3842/SIGMA.2019.093
Let X be a holomorphic symplectic variety with a torus T action and a finite fixed point set of cardinality k. We assume that an elliptic stable envelope exists for X. Let AI, J=Stab(J)|I be the k×k matrix of restrictions of the elliptic stable envelopes of X to the fixed points. The entries of this matrix are theta-functions of two groups of variables: the Kähler parameters and equivariant parameters of X. We say that two such varieties X and X′ are related by the 3d mirror symmetry if the fixed point sets of X and X′ have the same cardinality and can be identified so that the restriction matrix of X becomes equal to the restriction matrix of X′ after transposition and interchanging the equivariant and Kähler parameters of X, respectively, with the Kähler and equivariant parameters of X′. The first examples of pairs of 3d symmetric varieties were constructed in [Rimányi R., Smirnov A., Varchenko A., Zhou Z., arXiv:1902.03677], where the cotangent bundle T*Gr(k,n) to a Grassmannian is proved to be a 3d mirror to a Nakajima quiver variety of Aₙ₋₁-type. In this paper, we prove that the cotangent bundle of the full flag variety is 3d mirror self-symmetric. That statement in particular leads to nontrivial theta-function identities.
The authors would like to thank M. Aganagic and A. Okounkov for their insights on 3d mirror symmetries and elliptic stable envelopes that motivate this work. We thank I. Cherednik for his interest in this work and useful comments. R.R. is supported by the Simons Foundation grant 523882. A.S. is supported by RFBR grant 18-01-00926 and by the AMS travel grant. A.V. is supported in part by NSF grant DMS-1665239. Z.Z. is supported by FRG grant 1564500.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety
spellingShingle Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety
Rimányi, R.
Smirnov, A.
Varchenko, A.
Zhou, Z.
title_short Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety
title_full Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety
title_fullStr Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety
title_full_unstemmed Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety
title_sort three-dimensional mirror self-symmetry of the cotangent bundle of the full flag variety
author Rimányi, R.
Smirnov, A.
Varchenko, A.
Zhou, Z.
author_facet Rimányi, R.
Smirnov, A.
Varchenko, A.
Zhou, Z.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Let X be a holomorphic symplectic variety with a torus T action and a finite fixed point set of cardinality k. We assume that an elliptic stable envelope exists for X. Let AI, J=Stab(J)|I be the k×k matrix of restrictions of the elliptic stable envelopes of X to the fixed points. The entries of this matrix are theta-functions of two groups of variables: the Kähler parameters and equivariant parameters of X. We say that two such varieties X and X′ are related by the 3d mirror symmetry if the fixed point sets of X and X′ have the same cardinality and can be identified so that the restriction matrix of X becomes equal to the restriction matrix of X′ after transposition and interchanging the equivariant and Kähler parameters of X, respectively, with the Kähler and equivariant parameters of X′. The first examples of pairs of 3d symmetric varieties were constructed in [Rimányi R., Smirnov A., Varchenko A., Zhou Z., arXiv:1902.03677], where the cotangent bundle T*Gr(k,n) to a Grassmannian is proved to be a 3d mirror to a Nakajima quiver variety of Aₙ₋₁-type. In this paper, we prove that the cotangent bundle of the full flag variety is 3d mirror self-symmetric. That statement in particular leads to nontrivial theta-function identities.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210295
citation_txt Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety / R. Rimányi, A. Smirnov, A. Varchenko, Z. Zhou // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 42 назв. — англ.
work_keys_str_mv AT rimanyir threedimensionalmirrorselfsymmetryofthecotangentbundleofthefullflagvariety
AT smirnova threedimensionalmirrorselfsymmetryofthecotangentbundleofthefullflagvariety
AT varchenkoa threedimensionalmirrorselfsymmetryofthecotangentbundleofthefullflagvariety
AT zhouz threedimensionalmirrorselfsymmetryofthecotangentbundleofthefullflagvariety
first_indexed 2025-12-07T21:25:03Z
last_indexed 2025-12-07T21:25:03Z
_version_ 1850886275580559360