Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety

Let X be a holomorphic symplectic variety with a torus T action and a finite fixed point set of cardinality k. We assume that an elliptic stable envelope exists for X. Let AI, J=Stab(J)|I be the k×k matrix of restrictions of the elliptic stable envelopes of X to the fixed points. The entries of this...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2019
Main Authors: Rimányi, R., Smirnov, A., Varchenko, A., Zhou, Z.
Format: Article
Language:English
Published: Інститут математики НАН України 2019
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/210295
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety / R. Rimányi, A. Smirnov, A. Varchenko, Z. Zhou // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 42 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine

Similar Items