Locally Nilpotent Derivations of Free Algebra of Rank Two

In commutative algebra, if δ is a locally nilpotent derivation of the polynomial algebra 𝛫[x₁, …, xd] over a field 𝛫 of characteristic 0 and w is a nonzero element of the kernel of δ, then Δ=wδ is also a locally nilpotent derivation with the same kernel as δ. In this paper, we prove that the locally...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автори: Drensky, V., Makar-Limanov, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210297
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Locally Nilpotent Derivations of Free Algebra of Rank Two / V. Drensky, L. Makar-Limanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In commutative algebra, if δ is a locally nilpotent derivation of the polynomial algebra 𝛫[x₁, …, xd] over a field 𝛫 of characteristic 0 and w is a nonzero element of the kernel of δ, then Δ=wδ is also a locally nilpotent derivation with the same kernel as δ. In this paper, we prove that the locally nilpotent derivation Δ of the free associative algebra 𝛫⟨X, Y⟩ is determined up to a multiplicative constant by its kernel. We also show that the kernel of Δ is a free associative algebra and give an explicit set of its free generators.
ISSN:1815-0659