Variations for Some Painlevé Equations
This paper first discusses the irreducibility of a Painlevé equation 𝘗. We explain how the Painlevé property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz, we associate an autonomous Hamiltonian ℍ to a Painlevé equation 𝘗. Complete integra...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2019 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210300 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Variations for Some Painlevé Equations / P.B. Acosta-Humánez, M. van der Put, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | This paper first discusses the irreducibility of a Painlevé equation 𝘗. We explain how the Painlevé property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz, we associate an autonomous Hamiltonian ℍ to a Painlevé equation 𝘗. Complete integrability of ℍ is shown to imply that all solutions to 𝘗 are classical (which includes algebraic), so in particular 𝘗 is solvable by "quadratures". Next, we show that the variational equation of 𝘗 at a given algebraic solution coincides with the normal variational equation of ℍ at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases 𝘗₂ to 𝘗₅ where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the differential Galois group for the first two variational equations. As expected, there are no cases where this group is commutative.
|
|---|---|
| ISSN: | 1815-0659 |