Variations for Some Painlevé Equations

This paper first discusses the irreducibility of a Painlevé equation 𝘗. We explain how the Painlevé property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz, we associate an autonomous Hamiltonian ℍ to a Painlevé equation 𝘗. Complete integra...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автори: Acosta-Humánez, P.B., van der Put, M., Top, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210300
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Variations for Some Painlevé Equations / P.B. Acosta-Humánez, M. van der Put, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper first discusses the irreducibility of a Painlevé equation 𝘗. We explain how the Painlevé property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz, we associate an autonomous Hamiltonian ℍ to a Painlevé equation 𝘗. Complete integrability of ℍ is shown to imply that all solutions to 𝘗 are classical (which includes algebraic), so in particular 𝘗 is solvable by "quadratures". Next, we show that the variational equation of 𝘗 at a given algebraic solution coincides with the normal variational equation of ℍ at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases 𝘗₂ to 𝘗₅ where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the differential Galois group for the first two variational equations. As expected, there are no cases where this group is commutative.
ISSN:1815-0659