On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations

Self-similar solutions of the so-called Airy equations, equivalent to the dispersionless nonlinear Schrödinger equation written in Madelung coordinates, are found and studied from the point of view of complete integrability and of their role in the recurrence relation from a bi-Hamiltonian structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2019
Hauptverfasser: Camassa, R., Falqui, G., Ortenzi, G., Pedroni, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210301
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations / R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 35 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Self-similar solutions of the so-called Airy equations, equivalent to the dispersionless nonlinear Schrödinger equation written in Madelung coordinates, are found and studied from the point of view of complete integrability and of their role in the recurrence relation from a bi-Hamiltonian structure for the equations. This class of solutions reduces the PDEs to a finite ODE system, which admits several conserved quantities, which allow for to construction of explicit solutions by quadratures and provide the bi-Hamiltonian formulation for the reduced ODEs.
ISSN:1815-0659