On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations
Self-similar solutions of the so-called Airy equations, equivalent to the dispersionless nonlinear Schrödinger equation written in Madelung coordinates, are found and studied from the point of view of complete integrability and of their role in the recurrence relation from a bi-Hamiltonian structure...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2019 |
| Автори: | Camassa, R., Falqui, G., Ortenzi, G., Pedroni, M. |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210301 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations / R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
Twistor Theory of the Airy Equation
за авторством: Cole, M., та інші
Опубліковано: (2014) -
Self-similar solutions of multi-dimensional nonlinear Schrödinger equations
за авторством: Skoromnaya, S.F., та інші
Опубліковано: (2008) -
Integrable Discrete Equations Derived by Similarity Reduction of the Extended Discrete KP Hierarchy
за авторством: Svinin, A.K.
Опубліковано: (2006) -
Moments Match between the KPZ Equation and the Airy Point Process
за авторством: Borodin, A., та інші
Опубліковано: (2016) -
Higher Derivatives of Airy Functions and of their Products
за авторством: Abramochkin, E.G., та інші
Опубліковано: (2018)