The Ramificant Determinant

We give an introduction to the transalgebraic theory of simply connected log-Riemann surfaces with a finite number of infinite ramification points (transalgebraic curves of genus 0). We define the base vector space of transcendental functions and establish, by elementary methods, some transcendental...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автори: Biswas, K., Pérez-Marco, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210302
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Ramificant Determinant / K. Biswas, R. Pérez-Marco // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210302
record_format dspace
spelling Biswas, K.
Pérez-Marco, R.
2025-12-05T09:27:25Z
2019
The Ramificant Determinant / K. Biswas, R. Pérez-Marco // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 19 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 30F99; 30D99
arXiv: 1903.06770
https://nasplib.isofts.kiev.ua/handle/123456789/210302
https://doi.org/10.3842/SIGMA.2019.086
We give an introduction to the transalgebraic theory of simply connected log-Riemann surfaces with a finite number of infinite ramification points (transalgebraic curves of genus 0). We define the base vector space of transcendental functions and establish, by elementary methods, some transcendental properties. We introduce the Ramificant determinant constructed with transcendental periods, and we give a closed-form formula that gives the main applications to transalgebraic curves. We prove an Abel-like theorem and a Torelli-like theorem. Transposing to the transalgebraic curve, the base vector space of transcendental functions, they generate the structural ring from which the points of the transalgebraic curve can be recovered algebraically, including infinite ramification points.
We are grateful to Y. Levagnini and the referees for their careful reading and corrections that improved the article.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Ramificant Determinant
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Ramificant Determinant
spellingShingle The Ramificant Determinant
Biswas, K.
Pérez-Marco, R.
title_short The Ramificant Determinant
title_full The Ramificant Determinant
title_fullStr The Ramificant Determinant
title_full_unstemmed The Ramificant Determinant
title_sort ramificant determinant
author Biswas, K.
Pérez-Marco, R.
author_facet Biswas, K.
Pérez-Marco, R.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We give an introduction to the transalgebraic theory of simply connected log-Riemann surfaces with a finite number of infinite ramification points (transalgebraic curves of genus 0). We define the base vector space of transcendental functions and establish, by elementary methods, some transcendental properties. We introduce the Ramificant determinant constructed with transcendental periods, and we give a closed-form formula that gives the main applications to transalgebraic curves. We prove an Abel-like theorem and a Torelli-like theorem. Transposing to the transalgebraic curve, the base vector space of transcendental functions, they generate the structural ring from which the points of the transalgebraic curve can be recovered algebraically, including infinite ramification points.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210302
citation_txt The Ramificant Determinant / K. Biswas, R. Pérez-Marco // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT biswask theramificantdeterminant
AT perezmarcor theramificantdeterminant
AT biswask ramificantdeterminant
AT perezmarcor ramificantdeterminant
first_indexed 2025-12-07T21:25:04Z
last_indexed 2025-12-07T21:25:04Z
_version_ 1850886276859822080