Dispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics

Using diffeomorphism group vector fields on C-multiplied tori and the related Lie-algebraic structures, we study multi-dimensional dispersionless integrable systems that describe conformal structure generating equations of mathematical physics. An interesting modification of the devised Lie-algebrai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2019
Hauptverfasser: Hentosh, O.Ye., Prykarpatsky, Ya.A., Blackmore, D., Prykarpatski, A.K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210309
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Dispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics / O.Ye. Hentosh, Ya.A. Prykarpatsky, D. Blackmore, A.K. Prykarpatski // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Using diffeomorphism group vector fields on C-multiplied tori and the related Lie-algebraic structures, we study multi-dimensional dispersionless integrable systems that describe conformal structure generating equations of mathematical physics. An interesting modification of the devised Lie-algebraic approach subject to spatial-dimensional invariance and meromorphicity of the related differential-geometric structures is described and applied in proving complete integrability of some conformal structure generating equations. As examples, we analyze the Einstein-Weyl metric equation, the modified Einstein-Weyl metric equation, the Dunajski heavenly equation system, the first and second conformal structure generating equations, and the inverse first Shabat reduction heavenly equation. We also analyze the modified Plebański heavenly equations, the Husain heavenly equation, and the general Monge equation, along with their multi-dimensional generalizations. In addition, we construct superconformal analogs of the Whitham heavenly equation.
ISSN:1815-0659