Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras

Let Σg,n be a compact oriented surface of genus g with n open disks removed. The algebra Lg,n(H) was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on Σg,n. Here we focus on the two building blocks L₀,₁(H) and L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2019
1. Verfasser: Faitg, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210311
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras / M. Faitg // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let Σg,n be a compact oriented surface of genus g with n open disks removed. The algebra Lg,n(H) was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on Σg,n. Here we focus on the two building blocks L₀,₁(H) and L₁,₀(H) under the assumption that the gauge Hopf algebra H is finite-dimensional, factorizable, and ribbon, but not necessarily semisimple. We construct a projective representation of SL₂(Z), the mapping class group of the torus, based on L₁,₀(H), and we study it explicitly for H = Ūq(sl(2)). We also show that it is equivalent to the representation constructed by Lyubashenko and Majid.
ISSN:1815-0659