Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
Let Σg,n be a compact oriented surface of genus g with n open disks removed. The algebra Lg,n(H) was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on Σg,n. Here we focus on the two building blocks L₀,₁(H) and L...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2019 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210311 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras / M. Faitg // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 39 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-210311 |
|---|---|
| record_format |
dspace |
| spelling |
Faitg, M. 2025-12-05T09:32:54Z 2019 Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras / M. Faitg // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 39 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 16T05; 81R05 arXiv: 1805.00924 https://nasplib.isofts.kiev.ua/handle/123456789/210311 https://doi.org/10.3842/SIGMA.2019.077 Let Σg,n be a compact oriented surface of genus g with n open disks removed. The algebra Lg,n(H) was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on Σg,n. Here we focus on the two building blocks L₀,₁(H) and L₁,₀(H) under the assumption that the gauge Hopf algebra H is finite-dimensional, factorizable, and ribbon, but not necessarily semisimple. We construct a projective representation of SL₂(Z), the mapping class group of the torus, based on L₁,₀(H), and we study it explicitly for H = Ūq(sl(2)). We also show that it is equivalent to the representation constructed by Lyubashenko and Majid. I am grateful to my advisors, Stéphane Baseilhac and Philippe Roche, for their regular support and their useful remarks. I thank the referees for carefully reading the manuscript and for many valuable comments, which improved the paper. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras |
| spellingShingle |
Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras Faitg, M. |
| title_short |
Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras |
| title_full |
Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras |
| title_fullStr |
Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras |
| title_full_unstemmed |
Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras |
| title_sort |
modular group representations in combinatorial quantization with non-semisimple hopf algebras |
| author |
Faitg, M. |
| author_facet |
Faitg, M. |
| publishDate |
2019 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Let Σg,n be a compact oriented surface of genus g with n open disks removed. The algebra Lg,n(H) was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on Σg,n. Here we focus on the two building blocks L₀,₁(H) and L₁,₀(H) under the assumption that the gauge Hopf algebra H is finite-dimensional, factorizable, and ribbon, but not necessarily semisimple. We construct a projective representation of SL₂(Z), the mapping class group of the torus, based on L₁,₀(H), and we study it explicitly for H = Ūq(sl(2)). We also show that it is equivalent to the representation constructed by Lyubashenko and Majid.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/210311 |
| citation_txt |
Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras / M. Faitg // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 39 назв. — англ. |
| work_keys_str_mv |
AT faitgm modulargrouprepresentationsincombinatorialquantizationwithnonsemisimplehopfalgebras |
| first_indexed |
2025-12-07T21:25:06Z |
| last_indexed |
2025-12-07T21:25:06Z |
| _version_ |
1850886278924468224 |