Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras

Let Σg,n be a compact oriented surface of genus g with n open disks removed. The algebra Lg,n(H) was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on Σg,n. Here we focus on the two building blocks L₀,₁(H) and L...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автор: Faitg, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210311
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras / M. Faitg // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210311
record_format dspace
spelling Faitg, M.
2025-12-05T09:32:54Z
2019
Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras / M. Faitg // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 39 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 16T05; 81R05
arXiv: 1805.00924
https://nasplib.isofts.kiev.ua/handle/123456789/210311
https://doi.org/10.3842/SIGMA.2019.077
Let Σg,n be a compact oriented surface of genus g with n open disks removed. The algebra Lg,n(H) was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on Σg,n. Here we focus on the two building blocks L₀,₁(H) and L₁,₀(H) under the assumption that the gauge Hopf algebra H is finite-dimensional, factorizable, and ribbon, but not necessarily semisimple. We construct a projective representation of SL₂(Z), the mapping class group of the torus, based on L₁,₀(H), and we study it explicitly for H = Ūq(sl(2)). We also show that it is equivalent to the representation constructed by Lyubashenko and Majid.
I am grateful to my advisors, Stéphane Baseilhac and Philippe Roche, for their regular support and their useful remarks. I thank the referees for carefully reading the manuscript and for many valuable comments, which improved the paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
spellingShingle Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
Faitg, M.
title_short Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
title_full Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
title_fullStr Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
title_full_unstemmed Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras
title_sort modular group representations in combinatorial quantization with non-semisimple hopf algebras
author Faitg, M.
author_facet Faitg, M.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Let Σg,n be a compact oriented surface of genus g with n open disks removed. The algebra Lg,n(H) was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and is a combinatorial quantization of the moduli space of flat connections on Σg,n. Here we focus on the two building blocks L₀,₁(H) and L₁,₀(H) under the assumption that the gauge Hopf algebra H is finite-dimensional, factorizable, and ribbon, but not necessarily semisimple. We construct a projective representation of SL₂(Z), the mapping class group of the torus, based on L₁,₀(H), and we study it explicitly for H = Ūq(sl(2)). We also show that it is equivalent to the representation constructed by Lyubashenko and Majid.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210311
citation_txt Modular Group Representations in Combinatorial Quantization with Non-Semisimple Hopf Algebras / M. Faitg // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 39 назв. — англ.
work_keys_str_mv AT faitgm modulargrouprepresentationsincombinatorialquantizationwithnonsemisimplehopfalgebras
first_indexed 2025-12-07T21:25:06Z
last_indexed 2025-12-07T21:25:06Z
_version_ 1850886278924468224