Momentum Sections in Hamiltonian Mechanics and Sigma Models
We show that a constrained Hamiltonian system and a gauged sigma model have a structure of a momentum section and a Hamiltonian Lie algebroid theory recently introduced by Blohmann and Weinstein. We propose a generalization of a momentum section on a pre-multisymplectic manifold by considering gauge...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2019 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210312 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Momentum Sections in Hamiltonian Mechanics and Sigma Models / N. Ikeda // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-210312 |
|---|---|
| record_format |
dspace |
| spelling |
Ikeda, N. 2025-12-05T09:33:21Z 2019 Momentum Sections in Hamiltonian Mechanics and Sigma Models / N. Ikeda // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D20; 70H33; 70S05 arXiv: 1905.02434 https://nasplib.isofts.kiev.ua/handle/123456789/210312 https://doi.org/10.3842/SIGMA.2019.076 We show that a constrained Hamiltonian system and a gauged sigma model have a structure of a momentum section and a Hamiltonian Lie algebroid theory recently introduced by Blohmann and Weinstein. We propose a generalization of a momentum section on a pre-multisymplectic manifold by considering gauged sigma models on higher-dimensional manifolds. The author would like to thank Yuji Hirota, Kohei Miura, Satoshi Watamura, and Alan Weinstein for their useful comments. He thanks the referees for their careful reading of the manuscript and especially for their helpful comments. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Momentum Sections in Hamiltonian Mechanics and Sigma Models Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Momentum Sections in Hamiltonian Mechanics and Sigma Models |
| spellingShingle |
Momentum Sections in Hamiltonian Mechanics and Sigma Models Ikeda, N. |
| title_short |
Momentum Sections in Hamiltonian Mechanics and Sigma Models |
| title_full |
Momentum Sections in Hamiltonian Mechanics and Sigma Models |
| title_fullStr |
Momentum Sections in Hamiltonian Mechanics and Sigma Models |
| title_full_unstemmed |
Momentum Sections in Hamiltonian Mechanics and Sigma Models |
| title_sort |
momentum sections in hamiltonian mechanics and sigma models |
| author |
Ikeda, N. |
| author_facet |
Ikeda, N. |
| publishDate |
2019 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We show that a constrained Hamiltonian system and a gauged sigma model have a structure of a momentum section and a Hamiltonian Lie algebroid theory recently introduced by Blohmann and Weinstein. We propose a generalization of a momentum section on a pre-multisymplectic manifold by considering gauged sigma models on higher-dimensional manifolds.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/210312 |
| citation_txt |
Momentum Sections in Hamiltonian Mechanics and Sigma Models / N. Ikeda // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 27 назв. — англ. |
| work_keys_str_mv |
AT ikedan momentumsectionsinhamiltonianmechanicsandsigmamodels |
| first_indexed |
2025-12-07T21:25:06Z |
| last_indexed |
2025-12-07T21:25:06Z |
| _version_ |
1850886278968508416 |