Momentum Sections in Hamiltonian Mechanics and Sigma Models

We show that a constrained Hamiltonian system and a gauged sigma model have a structure of a momentum section and a Hamiltonian Lie algebroid theory recently introduced by Blohmann and Weinstein. We propose a generalization of a momentum section on a pre-multisymplectic manifold by considering gauge...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автор: Ikeda, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210312
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Momentum Sections in Hamiltonian Mechanics and Sigma Models / N. Ikeda // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210312
record_format dspace
spelling Ikeda, N.
2025-12-05T09:33:21Z
2019
Momentum Sections in Hamiltonian Mechanics and Sigma Models / N. Ikeda // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 27 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53D20; 70H33; 70S05
arXiv: 1905.02434
https://nasplib.isofts.kiev.ua/handle/123456789/210312
https://doi.org/10.3842/SIGMA.2019.076
We show that a constrained Hamiltonian system and a gauged sigma model have a structure of a momentum section and a Hamiltonian Lie algebroid theory recently introduced by Blohmann and Weinstein. We propose a generalization of a momentum section on a pre-multisymplectic manifold by considering gauged sigma models on higher-dimensional manifolds.
The author would like to thank Yuji Hirota, Kohei Miura, Satoshi Watamura, and Alan Weinstein for their useful comments. He thanks the referees for their careful reading of the manuscript and especially for their helpful comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Momentum Sections in Hamiltonian Mechanics and Sigma Models
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Momentum Sections in Hamiltonian Mechanics and Sigma Models
spellingShingle Momentum Sections in Hamiltonian Mechanics and Sigma Models
Ikeda, N.
title_short Momentum Sections in Hamiltonian Mechanics and Sigma Models
title_full Momentum Sections in Hamiltonian Mechanics and Sigma Models
title_fullStr Momentum Sections in Hamiltonian Mechanics and Sigma Models
title_full_unstemmed Momentum Sections in Hamiltonian Mechanics and Sigma Models
title_sort momentum sections in hamiltonian mechanics and sigma models
author Ikeda, N.
author_facet Ikeda, N.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show that a constrained Hamiltonian system and a gauged sigma model have a structure of a momentum section and a Hamiltonian Lie algebroid theory recently introduced by Blohmann and Weinstein. We propose a generalization of a momentum section on a pre-multisymplectic manifold by considering gauged sigma models on higher-dimensional manifolds.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210312
citation_txt Momentum Sections in Hamiltonian Mechanics and Sigma Models / N. Ikeda // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT ikedan momentumsectionsinhamiltonianmechanicsandsigmamodels
first_indexed 2025-12-07T21:25:06Z
last_indexed 2025-12-07T21:25:06Z
_version_ 1850886278968508416