NNSC-Cobordism of Bartnik Data in High Dimensions

In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are (n−1)-dimensional Bartnik data (Σⁿ⁻¹ᵢ, γᵢ, Hᵢ), i=1,2, NNSC-cobordant? If (𝕊ⁿ⁻¹, γₛₜd, 0) is positive scalar curvature (PSC) cobordant...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2020
Автори: Hu, Xue, Shi, Yuguang
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2020
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210580
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:NNSC-Cobordism of Bartnik Data in High Dimensions. Xue Hu and Yuguang Shi. SIGMA 16 (2020), 030, 5 pages

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are (n−1)-dimensional Bartnik data (Σⁿ⁻¹ᵢ, γᵢ, Hᵢ), i=1,2, NNSC-cobordant? If (𝕊ⁿ⁻¹, γₛₜd, 0) is positive scalar curvature (PSC) cobordant to (Σⁿ⁻¹₁,γ₁, H₁), where (𝕊ⁿ⁻¹, γₛₜd) denotes the standard round unit sphere, then (Σⁿ⁻¹₁,γ₁, H₁) admits an NNSC fill-in. Just as Gromov's conjecture is connected with the positive mass theorem, our problems are connected with the Penrose inequality, at least in the case of n=3. Our third problem is on Λ(Σⁿ⁻¹, γ) defined below.
ISSN:1815-0659