NNSC-Cobordism of Bartnik Data in High Dimensions
In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are (n−1)-dimensional Bartnik data (Σⁿ⁻¹ᵢ, γᵢ, Hᵢ), i=1,2, NNSC-cobordant? If (𝕊ⁿ⁻¹, γₛₜd, 0) is positive scalar curvature (PSC) cobordant...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2020 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2020
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210580 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | NNSC-Cobordism of Bartnik Data in High Dimensions. Xue Hu and Yuguang Shi. SIGMA 16 (2020), 030, 5 pages |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are (n−1)-dimensional Bartnik data (Σⁿ⁻¹ᵢ, γᵢ, Hᵢ), i=1,2, NNSC-cobordant? If (𝕊ⁿ⁻¹, γₛₜd, 0) is positive scalar curvature (PSC) cobordant to (Σⁿ⁻¹₁,γ₁, H₁), where (𝕊ⁿ⁻¹, γₛₜd) denotes the standard round unit sphere, then (Σⁿ⁻¹₁,γ₁, H₁) admits an NNSC fill-in. Just as Gromov's conjecture is connected with the positive mass theorem, our problems are connected with the Penrose inequality, at least in the case of n=3. Our third problem is on Λ(Σⁿ⁻¹, γ) defined below.
|
|---|---|
| ISSN: | 1815-0659 |