Horospherical Cauchy Transform on Some Pseudo-Hyperbolic Spaces

We consider the horospherical transform and its inversion in 3 examples of hyperboloids. We want to illustrate via these examples the fact that the horospherical inversion formulas can be directly extracted from the classical Radon inversion formula. In a broader context, this possibility reflects t...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2020
Автор: Gindikin, Simon
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2020
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210586
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Horospherical Cauchy Transform on Some Pseudo-Hyperbolic Spaces. Simon Gindikin. SIGMA 16 (2020), 024, 10 pages

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider the horospherical transform and its inversion in 3 examples of hyperboloids. We want to illustrate via these examples the fact that the horospherical inversion formulas can be directly extracted from the classical Radon inversion formula. In a broader context, this possibility reflects the fact that the harmonic analysis on symmetric spaces (Riemannian as well as pseudo-Riemannian ones) is equivalent (homologous), up to the Abelian Fourier transform, to the similar problem in the flat model. On the technical level, we must work not with the usual horospherical transform, but with its Cauchy modification.
ISSN:1815-0659