Legendrian DGA Representations and the Colored Kauffman Polynomial

For any Legendrian knot 𝛫 in standard contact ℝ³, we relate counts of ungraded (1-graded) representations of the Legendrian contact homology DG-algebra (A(𝛫), ∂) with the n-colored Kauffman polynomial. To do this, we introduce an ungraded n-colored ruling polynomial, R¹ₙ, 𝛫(q), as a linear combinati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2020
Hauptverfasser: Murray, Justin, Rutherford, Dan
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210593
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Legendrian DGA Representations and the Colored Kauffman Polynomial. Justin Murray and Dan Rutherford. SIGMA 16 (2020), 017, 33 pages

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:For any Legendrian knot 𝛫 in standard contact ℝ³, we relate counts of ungraded (1-graded) representations of the Legendrian contact homology DG-algebra (A(𝛫), ∂) with the n-colored Kauffman polynomial. To do this, we introduce an ungraded n-colored ruling polynomial, R¹ₙ, 𝛫(q), as a linear combination of reduced ruling polynomials of positive permutation braids and show that (i) R¹ₙ, 𝛫(q) arises as a specialization 𝘍ₙ, 𝛫(a, q)∣ₐ⁻¹₌₀ of the n-colored Kauffman polynomial and (ii) when q is a power of two R¹ₙ, 𝛫(q) agrees with the total ungraded representation number, Rep₁(𝛫, 𝔽ⁿq), which is a normalized count of n-dimensional representations of (A(𝛫),∂) over the finite field 𝔽q. This complements results from [Leverson C., Rutherford D., Quantum Topol. 11 (2020), 55-118] concerning the colored HOMFLY-PT polynomial, m-graded representation numbers, and m-graded ruling polynomials with m≠1.
ISSN:1815-0659