Classical Superintegrable Systems in a Magnetic Field that Separate in Cartesian Coordinates

We consider superintegrability in classical mechanics in the presence of magnetic fields. We focus on three-dimensional systems that are separable in Cartesian coordinates. We construct all possible minimally and maximally superintegrable systems in this class with additional integrals quadratic in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2020
Hauptverfasser: Marchesiello, Antonella, Šnobl, Libor
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210595
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Classical Superintegrable Systems in a Magnetic Field that Separate in Cartesian Coordinates. Antonella Marchesiello and Libor Šnobl. SIGMA 16 (2020), 015, 35 pages

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We consider superintegrability in classical mechanics in the presence of magnetic fields. We focus on three-dimensional systems that are separable in Cartesian coordinates. We construct all possible minimally and maximally superintegrable systems in this class with additional integrals quadratic in the momenta. Together with the results of our previous paper [J. Phys. A: Math. Theor. 50 (2017), 245202, 24 pages], where one of the additional integrals was by assumption linear, we conclude the classification of three-dimensional quadratically minimally and maximally superintegrable systems separable in Cartesian coordinates. We also describe two particular methods for constructing superintegrable systems with higher-order integrals.
ISSN:1815-0659