Quasi-Isometric Bounded Generation by Q-Rank-One Subgroups
We say that a subset X quasi-isometrically boundedly generates a finitely generated group Γ if each element γ of a finite-index subgroup of Γ can be written as a product γ = x₁x₂⋯xᵣ of a bounded number of elements of X, such that the word length of each xᵢ is bounded by a constant times the word len...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2020 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2020
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/210598 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Quasi-Isometric Bounded Generation by Q-Rank-One Subgroups. Dave Witte Morris. SIGMA 16 (2020), 012, 17 pages |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineBe the first to leave a comment!