Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity
We give a complete classification of analytic equivalence of germs of parametric families of systems of complex linear differential equations unfolding a generic resonant singularity of Poincaré rank 1 in dimension n=2 whose leading matrix is a Jordan bloc. The moduli space of analytic equivalence c...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2020 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2020
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/210604 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity. Martin Klimeš. SIGMA 16 (2020), 006, 46 pages |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | We give a complete classification of analytic equivalence of germs of parametric families of systems of complex linear differential equations unfolding a generic resonant singularity of Poincaré rank 1 in dimension n=2 whose leading matrix is a Jordan bloc. The moduli space of analytic equivalence classes is described in terms of a tuple of formal invariants and a single analytic invariant obtained from the trace of monodromy, and analytic normal forms are given. We also explain the underlying phenomena of the confluence of two simple singularities and of a turning point, the associated Stokes geometry, and the change of order of Borel summability of formal solutions in dependence on a complex parameter.
|
|---|---|
| ISSN: | 1815-0659 |