On Complex Gamma-Function Integrals

It was observed recently that relations between matrix elements of certain operators in the SL(2, ℝ) spin chain models take the form of multidimensional integrals derived by R.A. Gustafson. The spin magnets with SL(2, ℂ) symmetry group and L₂(ℂ) as a local Hilbert space give rise to a new type of Γ-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2020
Hauptverfasser: Derkachov, Sergey É., Manashov, Alexander N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210607
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On Complex Gamma-Function Integrals. Sergey É. Derkachov and Alexander N. Manashov. SIGMA 16 (2020), 003, 20 pages

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:It was observed recently that relations between matrix elements of certain operators in the SL(2, ℝ) spin chain models take the form of multidimensional integrals derived by R.A. Gustafson. The spin magnets with SL(2, ℂ) symmetry group and L₂(ℂ) as a local Hilbert space give rise to a new type of Γ-function integrals. In this work, we present a direct calculation of two such integrals. We also analyse properties of these integrals and show that they comprise the star-triangle relations recently discussed in the literature. It is also shown that in the quasi-classical limit, these integral identities are reduced to the duality relations for Dotsenko-Fateev integrals.
ISSN:1815-0659