Aspects of Hecke Symmetry: Anomalies, Curves, and Chazy Equations

We study various relations governing quasi-automorphic forms associated with discrete subgroups of SL(2, ℝ), namely the Hecke groups. We show that the Eisenstein series associated to a Hecke group H(m) satisfy a set of m coupled linear differential equations, which are natural analogues of the well-...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2020
Автори: Ashok, Sujay K., Jatkar, Dileep P., Raman, Madhusudhan
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2020
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210609
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Aspects of Hecke Symmetry: Anomalies, Curves, and Chazy Equations. Sujay K. Ashok, Dileep P. Jatkar and Madhusudhan Raman. SIGMA 16 (2020), 001, 26 pages

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study various relations governing quasi-automorphic forms associated with discrete subgroups of SL(2, ℝ), namely the Hecke groups. We show that the Eisenstein series associated to a Hecke group H(m) satisfy a set of m coupled linear differential equations, which are natural analogues of the well-known Ramanujan identities for quasi-modular forms of SL(2, ℤ). Each Hecke group is then associated with a (hyper-)elliptic curve, whose coefficients are determined by an anomaly equation. For the m = 3 and 4 cases, the Ramanujan identities admit a natural geometric interpretation as a Gauss-Manin connection on the parameter space of the elliptic curve. The Ramanujan identities also allow us to associate a nonlinear differential equation of order m to each Hecke group. These equations are higher-order analogues of the Chazy equation, and we show that they are solved by the quasi-automorphic Eisenstein series E⁽ᵐ⁾₂ associated to H(m) and its orbit under the Hecke group. We conclude by demonstrating that these nonlinear equations possess the Painlevé property.
ISSN:1815-0659