Mirror Symmetry for Nonabelian Landau-Ginzburg Models

We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group G⋆, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2020
Автори: Priddis, Nathan, Ward, Joseph, Williams, Matthew M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2020
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210691
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Mirror Symmetry for Nonabelian Landau-Ginzburg Models. Nathan Priddis, Joseph Ward and Matthew M. Williams. SIGMA 16 (2020), 059, 31 pages

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210691
record_format dspace
spelling Priddis, Nathan
Ward, Joseph
Williams, Matthew M.
2025-12-15T15:16:37Z
2020
Mirror Symmetry for Nonabelian Landau-Ginzburg Models. Nathan Priddis, Joseph Ward and Matthew M. Williams. SIGMA 16 (2020), 059, 31 pages
1815-0659
2020 Mathematics Subject Classification: 14J32; 53D45; 14J81
arXiv:1812.06200
https://nasplib.isofts.kiev.ua/handle/123456789/210691
https://doi.org/10.3842/SIGMA.2020.059
We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group G⋆, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors for Fermat-type polynomials.
The authors would like to thank Tyler Jarvis, Yongbin Ruan, and Yefeng Shen for their helpful remarks on early results. We would also like to thank the anonymous referees whose suggestions have greatly improved this article.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Mirror Symmetry for Nonabelian Landau-Ginzburg Models
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Mirror Symmetry for Nonabelian Landau-Ginzburg Models
spellingShingle Mirror Symmetry for Nonabelian Landau-Ginzburg Models
Priddis, Nathan
Ward, Joseph
Williams, Matthew M.
title_short Mirror Symmetry for Nonabelian Landau-Ginzburg Models
title_full Mirror Symmetry for Nonabelian Landau-Ginzburg Models
title_fullStr Mirror Symmetry for Nonabelian Landau-Ginzburg Models
title_full_unstemmed Mirror Symmetry for Nonabelian Landau-Ginzburg Models
title_sort mirror symmetry for nonabelian landau-ginzburg models
author Priddis, Nathan
Ward, Joseph
Williams, Matthew M.
author_facet Priddis, Nathan
Ward, Joseph
Williams, Matthew M.
publishDate 2020
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group G⋆, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors for Fermat-type polynomials.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210691
citation_txt Mirror Symmetry for Nonabelian Landau-Ginzburg Models. Nathan Priddis, Joseph Ward and Matthew M. Williams. SIGMA 16 (2020), 059, 31 pages
work_keys_str_mv AT priddisnathan mirrorsymmetryfornonabelianlandauginzburgmodels
AT wardjoseph mirrorsymmetryfornonabelianlandauginzburgmodels
AT williamsmatthewm mirrorsymmetryfornonabelianlandauginzburgmodels
first_indexed 2025-12-17T12:03:39Z
last_indexed 2025-12-17T12:03:39Z
_version_ 1851756925412179968