Mirror Symmetry for Nonabelian Landau-Ginzburg Models
We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group G⋆, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2020 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2020
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210691 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Mirror Symmetry for Nonabelian Landau-Ginzburg Models. Nathan Priddis, Joseph Ward and Matthew M. Williams. SIGMA 16 (2020), 059, 31 pages |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-210691 |
|---|---|
| record_format |
dspace |
| spelling |
Priddis, Nathan Ward, Joseph Williams, Matthew M. 2025-12-15T15:16:37Z 2020 Mirror Symmetry for Nonabelian Landau-Ginzburg Models. Nathan Priddis, Joseph Ward and Matthew M. Williams. SIGMA 16 (2020), 059, 31 pages 1815-0659 2020 Mathematics Subject Classification: 14J32; 53D45; 14J81 arXiv:1812.06200 https://nasplib.isofts.kiev.ua/handle/123456789/210691 https://doi.org/10.3842/SIGMA.2020.059 We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group G⋆, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors for Fermat-type polynomials. The authors would like to thank Tyler Jarvis, Yongbin Ruan, and Yefeng Shen for their helpful remarks on early results. We would also like to thank the anonymous referees whose suggestions have greatly improved this article. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Mirror Symmetry for Nonabelian Landau-Ginzburg Models Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Mirror Symmetry for Nonabelian Landau-Ginzburg Models |
| spellingShingle |
Mirror Symmetry for Nonabelian Landau-Ginzburg Models Priddis, Nathan Ward, Joseph Williams, Matthew M. |
| title_short |
Mirror Symmetry for Nonabelian Landau-Ginzburg Models |
| title_full |
Mirror Symmetry for Nonabelian Landau-Ginzburg Models |
| title_fullStr |
Mirror Symmetry for Nonabelian Landau-Ginzburg Models |
| title_full_unstemmed |
Mirror Symmetry for Nonabelian Landau-Ginzburg Models |
| title_sort |
mirror symmetry for nonabelian landau-ginzburg models |
| author |
Priddis, Nathan Ward, Joseph Williams, Matthew M. |
| author_facet |
Priddis, Nathan Ward, Joseph Williams, Matthew M. |
| publishDate |
2020 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group G⋆, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors for Fermat-type polynomials.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/210691 |
| citation_txt |
Mirror Symmetry for Nonabelian Landau-Ginzburg Models. Nathan Priddis, Joseph Ward and Matthew M. Williams. SIGMA 16 (2020), 059, 31 pages |
| work_keys_str_mv |
AT priddisnathan mirrorsymmetryfornonabelianlandauginzburgmodels AT wardjoseph mirrorsymmetryfornonabelianlandauginzburgmodels AT williamsmatthewm mirrorsymmetryfornonabelianlandauginzburgmodels |
| first_indexed |
2025-12-17T12:03:39Z |
| last_indexed |
2025-12-17T12:03:39Z |
| _version_ |
1851756925412179968 |