Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic

P. Berglund, T. Hübsch, and M. Henningson proposed a method to construct mirror-symmetric Calabi-Yau manifolds. They considered a pair consisting of an invertible polynomial and of a finite (abelian) group of its diagonal symmetries together with a dual pair. A. Takahashi suggested a method to gener...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2020
Автори: Ebeling, Wolfgang, Gusein-Zade, Sabir M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2020
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210699
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic. Wolfgang Ebeling and Sabir M. Gusein-Zade. SIGMA 16 (2020), 051, 15 pages

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:P. Berglund, T. Hübsch, and M. Henningson proposed a method to construct mirror-symmetric Calabi-Yau manifolds. They considered a pair consisting of an invertible polynomial and of a finite (abelian) group of its diagonal symmetries together with a dual pair. A. Takahashi suggested a method to generalize this construction to symmetry groups generated by some diagonal symmetries and some permutations of variables. In a previous paper, we explained that this construction should work only under a special condition on the permutation group called the parity condition (PC). Here we prove that, if the permutation group is cyclic and satisfies PC, then the reduced orbifold Euler characteristics of the Milnor fibres of dual pairs coincide up to sign.
ISSN:1815-0659