On the Notion of Noncommutative Submanifold

We review the notion of submanifold algebra, as introduced by T. Masson, and discuss some properties and examples. A submanifold algebra of an associative algebra 𝘈 is a quotient algebra 𝘉 such that all derivations of 𝘉 can be lifted to 𝘈. We will argue that in the case of smooth functions on manifo...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2020
Автор: D'Andrea, Francesco
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2020
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210700
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Notion of Noncommutative Submanifold. Francesco D'Andrea. SIGMA 16 (2020), 050, 21 pages

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210700
record_format dspace
spelling D'Andrea, Francesco
2025-12-15T15:24:18Z
2020
On the Notion of Noncommutative Submanifold. Francesco D'Andrea. SIGMA 16 (2020), 050, 21 pages
1815-0659
2020 Mathematics Subject Classification: 46L87; 53C99; 53D55; 13N15
arXiv:1912.01225
https://nasplib.isofts.kiev.ua/handle/123456789/210700
https://doi.org/10.3842/SIGMA.2020.050
We review the notion of submanifold algebra, as introduced by T. Masson, and discuss some properties and examples. A submanifold algebra of an associative algebra 𝘈 is a quotient algebra 𝘉 such that all derivations of 𝘉 can be lifted to 𝘈. We will argue that in the case of smooth functions on manifolds, every quotient algebra is a submanifold algebra, derive a topological obstruction when the algebras are deformation quantizations of symplectic manifolds, present some (commutative and noncommutative) examples and counterexamples.
I would like to thank Alessandro De Paris for suggesting Example 17 and Chiara Esposito for her comments on a preliminary version of the paper. A special thanks goes to the anonymous referees for carefully reading the paper and suggesting some interesting future research lines.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the Notion of Noncommutative Submanifold
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Notion of Noncommutative Submanifold
spellingShingle On the Notion of Noncommutative Submanifold
D'Andrea, Francesco
title_short On the Notion of Noncommutative Submanifold
title_full On the Notion of Noncommutative Submanifold
title_fullStr On the Notion of Noncommutative Submanifold
title_full_unstemmed On the Notion of Noncommutative Submanifold
title_sort on the notion of noncommutative submanifold
author D'Andrea, Francesco
author_facet D'Andrea, Francesco
publishDate 2020
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We review the notion of submanifold algebra, as introduced by T. Masson, and discuss some properties and examples. A submanifold algebra of an associative algebra 𝘈 is a quotient algebra 𝘉 such that all derivations of 𝘉 can be lifted to 𝘈. We will argue that in the case of smooth functions on manifolds, every quotient algebra is a submanifold algebra, derive a topological obstruction when the algebras are deformation quantizations of symplectic manifolds, present some (commutative and noncommutative) examples and counterexamples.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210700
citation_txt On the Notion of Noncommutative Submanifold. Francesco D'Andrea. SIGMA 16 (2020), 050, 21 pages
work_keys_str_mv AT dandreafrancesco onthenotionofnoncommutativesubmanifold
first_indexed 2025-12-17T12:03:41Z
last_indexed 2025-12-17T12:03:41Z
_version_ 1851756926634819584