Triply Periodic Monopoles and Difference Modules on Elliptic Curves
We explain the correspondences between twisted monopoles with Dirac-type singularity and polystable twisted mini-holomorphic bundles with Dirac-type singularity on a 3-dimensional torus. We also explain that they are equivalent to polystable parabolic twisted difference modules on elliptic curves.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2020 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2020
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210702 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Triply Periodic Monopoles and Difference Modules on Elliptic Curves. Takuro Mochizuki. SIGMA 16 (2020), 048, 23 pages |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We explain the correspondences between twisted monopoles with Dirac-type singularity and polystable twisted mini-holomorphic bundles with Dirac-type singularity on a 3-dimensional torus. We also explain that they are equivalent to polystable parabolic twisted difference modules on elliptic curves.
|
|---|---|
| ISSN: | 1815-0659 |