Higher Rank Ẑ and FK
We study q-series-valued invariants of 3-manifolds that depend on the choice of a root system 𝐺. This is a natural generalization of the earlier works by Gukov-Pei-Putrov-Vafa [arXiv:1701.06567] and Gukov-Manolescu [arXiv:1904.06057], where they focused on the 𝐺 = SU(2) case. Although a full mathema...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2020 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2020
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/210706 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Higher Rank Ẑ and FK. Sunghyuk Park. SIGMA 16 (2020), 044, 17 pages |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | We study q-series-valued invariants of 3-manifolds that depend on the choice of a root system 𝐺. This is a natural generalization of the earlier works by Gukov-Pei-Putrov-Vafa [arXiv:1701.06567] and Gukov-Manolescu [arXiv:1904.06057], where they focused on the 𝐺 = SU(2) case. Although a full mathematical definition for these ''invariants'' is lacking yet, we define Ẑ𝐺 for negative definite plumbed 3-manifolds and FGK for torus knot complements. As in the 𝐺 = SU(2) case by Gukov and Manolescu, there is a surgery formula relating FGK to Ẑ𝐺 of a Dehn surgery on the knot K. Furthermore, specializing to symmetric representations, FGK satisfies a recurrence relation given by the quantum A-polynomial for symmetric representations, which hints that there might be HOMFLY-PT analogues of these 3-manifold invariants.
|
|---|---|
| ISSN: | 1815-0659 |