Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D

Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277-300] for type A, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the R-matrix presentation of the quantum affine algebra yields the Drinfe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2020
Hauptverfasser: Jing, Naihuan, Liu, Ming, Molev, Alexander
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2020
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210707
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D. Naihuan Jing, Ming Liu and Alexander Molev. SIGMA 16 (2020), 043, 49 pages

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210707
record_format dspace
spelling Jing, Naihuan
Liu, Ming
Molev, Alexander
2025-12-15T15:25:35Z
2020
Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D. Naihuan Jing, Ming Liu and Alexander Molev. SIGMA 16 (2020), 043, 49 pages
1815-0659
2020 Mathematics Subject Classification: 17B37; 17B69
arXiv:1911.03496
https://nasplib.isofts.kiev.ua/handle/123456789/210707
https://doi.org/10.3842/SIGMA.2020.043
Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277-300] for type A, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the R-matrix presentation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type C were given therein, while the present paper deals with types B and D. The arguments for all classical types are quite similar, so we mostly concentrate on the necessary additional details specific to the underlying orthogonal Lie algebras.
Jing acknowledges the National Natural Science Foundation of China grant 11531004 and Simons Foundation grant 523868. Liu acknowledges the National Natural Science Foundation of China grant 11531004, 11701182, and the Guangdong Natural Science Foundation grant 2019A1515012039. Liu and Molev acknowledge the support of the Australian Research Council, grant DP180101825.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D
spellingShingle Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D
Jing, Naihuan
Liu, Ming
Molev, Alexander
title_short Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D
title_full Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D
title_fullStr Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D
title_full_unstemmed Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D
title_sort isomorphism between the r-matrix and drinfeld presentations of quantum affine algebra: types b and d
author Jing, Naihuan
Liu, Ming
Molev, Alexander
author_facet Jing, Naihuan
Liu, Ming
Molev, Alexander
publishDate 2020
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Following the approach of Ding and Frenkel [Comm. Math. Phys. 156 (1993), 277-300] for type A, we showed in our previous work [J. Math. Phys. 61 (2020), 031701, 41 pages] that the Gauss decomposition of the generator matrix in the R-matrix presentation of the quantum affine algebra yields the Drinfeld generators in all classical types. Complete details for type C were given therein, while the present paper deals with types B and D. The arguments for all classical types are quite similar, so we mostly concentrate on the necessary additional details specific to the underlying orthogonal Lie algebras.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210707
citation_txt Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D. Naihuan Jing, Ming Liu and Alexander Molev. SIGMA 16 (2020), 043, 49 pages
work_keys_str_mv AT jingnaihuan isomorphismbetweenthermatrixanddrinfeldpresentationsofquantumaffinealgebratypesbandd
AT liuming isomorphismbetweenthermatrixanddrinfeldpresentationsofquantumaffinealgebratypesbandd
AT molevalexander isomorphismbetweenthermatrixanddrinfeldpresentationsofquantumaffinealgebratypesbandd
first_indexed 2025-12-17T12:03:41Z
last_indexed 2025-12-17T12:03:41Z
_version_ 1851756926549884928