Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0

We extract genus 0 consequences of the all genera quantum HRR formula proved in Part IX. This includes re-proving and generalizing the adelic characterization of genus 0 quantum K-theory found in [Givental A., Tonita V., in Symplectic, Poisson, and Noncommutative Geometry, Math. Sci. Res. Inst. Publ...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2020
Автор: Givental, Alexander
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2020
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210719
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0. Alexander Givental. SIGMA 16 (2020), 031, 16 pages

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210719
record_format dspace
spelling Givental, Alexander
2025-12-15T15:32:23Z
2020
Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0. Alexander Givental. SIGMA 16 (2020), 031, 16 pages
1815-0659
2020 Mathematics Subject Classification: 14N35
arXiv:1710.02376
https://nasplib.isofts.kiev.ua/handle/123456789/210719
DOI: https://doi.org/10.3842/SIGMA.2020.031
We extract genus 0 consequences of the all genera quantum HRR formula proved in Part IX. This includes re-proving and generalizing the adelic characterization of genus 0 quantum K-theory found in [Givental A., Tonita V., in Symplectic, Poisson, and Noncommutative Geometry, Math. Sci. Res. Inst. Publ., Vol. 62, Cambridge University Press, New York, 2014, 43-91]. Extending some results of Part VIII, we derive the invariance of a certain variety (the ''big J-function''), constructed from the genus 0 descendant potential of permutation-equivariant quantum K-theory, under the action of certain finite difference operators in Novikov's variables, apply this to reconstructing the whole variety from one point on it, and give an explicit description of it in the case of the point target space.
This material is based upon work supported by the National Science Foundation under Grant DMS-1611839, by the IBS Center for Geometry and Physics, POSTECH, Korea, and by IHES, France.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0
spellingShingle Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0
Givental, Alexander
title_short Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0
title_full Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0
title_fullStr Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0
title_full_unstemmed Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0
title_sort permutation-equivariant quantum k-theory x. quantum hirzebruch-riemann-roch in genus 0
author Givental, Alexander
author_facet Givental, Alexander
publishDate 2020
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We extract genus 0 consequences of the all genera quantum HRR formula proved in Part IX. This includes re-proving and generalizing the adelic characterization of genus 0 quantum K-theory found in [Givental A., Tonita V., in Symplectic, Poisson, and Noncommutative Geometry, Math. Sci. Res. Inst. Publ., Vol. 62, Cambridge University Press, New York, 2014, 43-91]. Extending some results of Part VIII, we derive the invariance of a certain variety (the ''big J-function''), constructed from the genus 0 descendant potential of permutation-equivariant quantum K-theory, under the action of certain finite difference operators in Novikov's variables, apply this to reconstructing the whole variety from one point on it, and give an explicit description of it in the case of the point target space.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210719
citation_txt Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch-Riemann-Roch in Genus 0. Alexander Givental. SIGMA 16 (2020), 031, 16 pages
work_keys_str_mv AT giventalalexander permutationequivariantquantumktheoryxquantumhirzebruchriemannrochingenus0
first_indexed 2025-12-17T12:04:35Z
last_indexed 2025-12-17T12:04:35Z
_version_ 1851756983569350656