Рівномірне наближення з точним відтворенням значень функції та її похідних у заданих точках

Розглянуто задачу найкращої рівномірної (чебишовської) апроксимації дискретної функції з точним відтворенням її значень і значень її похідних у заданих точках. Досліджено властивості такої рівномірної апроксимації многочленом і встановлено необхідні та достатні умови її існування. Запропоновано тако...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Фізико-математичне моделювання та інформаційні технології
Datum:2007
1. Verfasser: Малачівський, П.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/21116
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Рівномірне наближення з точним відтворенням значень функції та її похідних у заданих точках / П. Малачівський // Фіз.-мат. моделювання та інформ. технології. — 2007. — Вип. 5. — С. 119-126. — Бібліогр.: 12 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Розглянуто задачу найкращої рівномірної (чебишовської) апроксимації дискретної функції з точним відтворенням її значень і значень її похідних у заданих точках. Досліджено властивості такої рівномірної апроксимації многочленом і встановлено необхідні та достатні умови її існування. Запропоновано також алгоритм для визначення параметрів апроксимації за схемою Ремеза з уточненням точок альтернанса за модифікованим алгоритмом Валле-Пуссена. The problem of the best uniform (Chebyshev) approximation for a discrete function with exact reproduction of its values and derivatives ones in certain given points is considered. The properties of such uniform polynomial approximation are investigated. Necessary and sufficient conditions of approximation existence are established as well as the Remez scheme is proposed for determining the approximation parameters with application of modified Vallee-Poussin algorithm. Рассмотрена задача наилучшей равномерной (чебишевской) аппроксимации дискретной функции с точным восстановлением ее значений и значений ее производных в заданных точках. Исследованы свойства такой равномерной аппроксимации многочленом и установлены необходимые и достаточные условия ее существования. Предложен также алгоритм для определения параметров аппроксимации по схеме Ремеза с уточнением точек альтернанса по модифицированному алгоритму Валле-Пуссена.
ISSN:1816-1545