Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області

Розглянуто гетерогенну математичну модель теорії пластичності та теорії пружності. Запропоновано чисельний спосіб розв’язування локально нелінійних задач методом декомпозиції області. Для моделювання нелінійної поведінки матеріалу використано співвідношення теорії пластичного течіння Губера-Мізеса,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Фізико-математичне моделювання та інформаційні технології
Datum:2009
Hauptverfasser: Дияк, І., Макар, І.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/21908
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області / І. Дияк, І. Макар // Фіз.-мат. моделювання та інформ. технології. — 2009. — Вип. 9. — С. 55-66. — Бібліогр.: 13 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-21908
record_format dspace
spelling Дияк, І.
Макар, І.
2011-06-20T07:37:17Z
2011-06-20T07:37:17Z
2009
Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області / І. Дияк, І. Макар // Фіз.-мат. моделювання та інформ. технології. — 2009. — Вип. 9. — С. 55-66. — Бібліогр.: 13 назв. — укр.
1816-1545
https://nasplib.isofts.kiev.ua/handle/123456789/21908
17.958:519.65
Розглянуто гетерогенну математичну модель теорії пластичності та теорії пружності. Запропоновано чисельний спосіб розв’язування локально нелінійних задач методом декомпозиції області. Для моделювання нелінійної поведінки матеріалу використано співвідношення теорії пластичного течіння Губера-Мізеса, які дискретизовано методом скінченних елементів. Наближений розв’язок нелінійної задачі знайдено методом Ньютона-Рафсона. У підобластях, в яких напружено-деформований стан описується лінійною теорією пружності, застосовано симетричний варіант прямого методу граничних елементів. Поєднання двох методів здійснено за допомогою ітераційних схем методу декомпозиції області. У роботі наведено результати чисельного експерименту, який демонструє працездатність розробленого алгоритму й ефективність створеного програмного забезпечення для розв’язування пружно-пластичних задач.
heterogeneous model of the theory of plasticity and the theory of elasticity is considered. Numerical method for solving locally nonlinear problems by the domain decomposition method is proposed. Nonlinear material behavior is modeled using Huber-Mises flow theory of plasticity. The finite element method and the Newton-Raphson procedure are used to solve nonlinear problem. Symmetric Galerkin boundary element method is utilized in linear elastic subdomains. Coupling of both methods is performed by iterative schemes of the domain decomposition method. Numerical experiment is included to demonstrate the operability of proposed algorithm and the effectiveness of developed computer program for solving elastic-plastic problems.
Рассмотрена гетерогенная математическая модель теории пластичности и теории упругости. Предлагается численный способ решения локально нелинейных задач методом декомпозиции области. Для моделирования нелинейного поведения материала использованы соотношения теории пластического течения Губера-Мизеса, для дискретизации которых используется метод конечных элементов. Приближенное решение нелинейной задачи получено методом Ньютона-Рафсона. В подобластях, где напряженно-деформированное состояние описывается уравнениями линейной теории упругости, применяется симметрический вариант прямого метода граничных элементов. Объединение обеих методов осуществляется с помощью итерационных схем метода декомпозиции области. В работе приведены результаты численного эксперимента, демонстрирующего работоспособность разработанного алгоритма и эффективность созданного программного обеспечения решения задач упругопластичности.
uk
Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
Фізико-математичне моделювання та інформаційні технології
Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області
Computer modelling of locally nonlinear problems using domain decomposition method
Компьютерное моделирование локально нелинейных задач на основе метода декомпозиции области
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області
spellingShingle Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області
Дияк, І.
Макар, І.
title_short Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області
title_full Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області
title_fullStr Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області
title_full_unstemmed Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області
title_sort комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області
author Дияк, І.
Макар, І.
author_facet Дияк, І.
Макар, І.
publishDate 2009
language Ukrainian
container_title Фізико-математичне моделювання та інформаційні технології
publisher Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
format Article
title_alt Computer modelling of locally nonlinear problems using domain decomposition method
Компьютерное моделирование локально нелинейных задач на основе метода декомпозиции области
description Розглянуто гетерогенну математичну модель теорії пластичності та теорії пружності. Запропоновано чисельний спосіб розв’язування локально нелінійних задач методом декомпозиції області. Для моделювання нелінійної поведінки матеріалу використано співвідношення теорії пластичного течіння Губера-Мізеса, які дискретизовано методом скінченних елементів. Наближений розв’язок нелінійної задачі знайдено методом Ньютона-Рафсона. У підобластях, в яких напружено-деформований стан описується лінійною теорією пружності, застосовано симетричний варіант прямого методу граничних елементів. Поєднання двох методів здійснено за допомогою ітераційних схем методу декомпозиції області. У роботі наведено результати чисельного експерименту, який демонструє працездатність розробленого алгоритму й ефективність створеного програмного забезпечення для розв’язування пружно-пластичних задач. heterogeneous model of the theory of plasticity and the theory of elasticity is considered. Numerical method for solving locally nonlinear problems by the domain decomposition method is proposed. Nonlinear material behavior is modeled using Huber-Mises flow theory of plasticity. The finite element method and the Newton-Raphson procedure are used to solve nonlinear problem. Symmetric Galerkin boundary element method is utilized in linear elastic subdomains. Coupling of both methods is performed by iterative schemes of the domain decomposition method. Numerical experiment is included to demonstrate the operability of proposed algorithm and the effectiveness of developed computer program for solving elastic-plastic problems. Рассмотрена гетерогенная математическая модель теории пластичности и теории упругости. Предлагается численный способ решения локально нелинейных задач методом декомпозиции области. Для моделирования нелинейного поведения материала использованы соотношения теории пластического течения Губера-Мизеса, для дискретизации которых используется метод конечных элементов. Приближенное решение нелинейной задачи получено методом Ньютона-Рафсона. В подобластях, где напряженно-деформированное состояние описывается уравнениями линейной теории упругости, применяется симметрический вариант прямого метода граничных элементов. Объединение обеих методов осуществляется с помощью итерационных схем метода декомпозиции области. В работе приведены результаты численного эксперимента, демонстрирующего работоспособность разработанного алгоритма и эффективность созданного программного обеспечения решения задач упругопластичности.
issn 1816-1545
url https://nasplib.isofts.kiev.ua/handle/123456789/21908
citation_txt Комп’ютерне моделювання локально нелінійних задач на основі методу декомпозиції області / І. Дияк, І. Макар // Фіз.-мат. моделювання та інформ. технології. — 2009. — Вип. 9. — С. 55-66. — Бібліогр.: 13 назв. — укр.
work_keys_str_mv AT diâkí kompûternemodelûvannâlokalʹnonelíníinihzadačnaosnovímetodudekompozicííoblastí
AT makarí kompûternemodelûvannâlokalʹnonelíníinihzadačnaosnovímetodudekompozicííoblastí
AT diâkí computermodellingoflocallynonlinearproblemsusingdomaindecompositionmethod
AT makarí computermodellingoflocallynonlinearproblemsusingdomaindecompositionmethod
AT diâkí kompʹûternoemodelirovanielokalʹnonelineinyhzadačnaosnovemetodadekompoziciioblasti
AT makarí kompʹûternoemodelirovanielokalʹnonelineinyhzadačnaosnovemetodadekompoziciioblasti
first_indexed 2025-12-07T15:56:22Z
last_indexed 2025-12-07T15:56:22Z
_version_ 1850865595998797824