Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування

У роботі запропоновано просторове узагальнення математичної моделі Мінца для "швидкого фільтра" з пористим завантаженням, що має форму криволінійного паралелепіпеда. Отримано алгоритм числово-асимптотичного наближення розв’язку відповідної модельної задачі, що описується системою нелінійни...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Фізико-математичне моделювання та інформаційні технології
Datum:2010
Hauptverfasser: Бомба, А., Климюк, Ю., Сафоник, А., Сівак, В.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2010
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/22274
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування / А. Бомба, Ю. Климюк, А. Сафоник, В. Сівак // Фіз.-мат. моделювання та інформ. технології. — 2010. — Вип. 11. — С. 29-38. — Бібліогр.: 17 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-22274
record_format dspace
spelling Бомба, А.
Климюк, Ю.
Сафоник, А.
Сівак, В.
2011-06-20T22:57:15Z
2011-06-20T22:57:15Z
2010
Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування / А. Бомба, Ю. Климюк, А. Сафоник, В. Сівак // Фіз.-мат. моделювання та інформ. технології. — 2010. — Вип. 11. — С. 29-38. — Бібліогр.: 17 назв. — укр.
1816-1545
https://nasplib.isofts.kiev.ua/handle/123456789/22274
628.113.2 : 66.067.1 + 517.95
У роботі запропоновано просторове узагальнення математичної моделі Мінца для "швидкого фільтра" з пористим завантаженням, що має форму криволінійного паралелепіпеда. Отримано алгоритм числово-асимптотичного наближення розв’язку відповідної модельної задачі, що описується системою нелінійних сингулярно збурених диференціальних рівнянь типу «конвекція-дифузія-масообмін» для криволінійного паралелепіпеда, обмеженого чотирма поверхнями течії та двома еквіпотенціальними поверхнями. Знайдені співвідношення є ефективні для проведення оптимізації параметрів процесу фільтрування, зокрема, часу захисної дії завантаження, розмірів фільтра тощо, а також теоретичних досліджень у випадках переважання конвективних і сорбційних складників відповідного процесу над дифузійними та десорбційними, що властиво в переважній більшості фільтрувальних установок. На цій основі проведено відповідний комп’ютерний експеримент, результати якого підтверджують відомий факт, що продуктивність роботи фільтра суттєво залежить від вибору його форми.
The special generalization of Minc mathematical model for a «rapid filter» with porous loading, having a form of curvilinear parallelepiped is proposed. The algorithm of the numeral-asymptotic approximate solution of the corresponding model problem, which is described by a system of nonlinear singular perturbed differential equalizations of the type "convection-diffusion-mass exchange" for a curvilinear parallelepiped, bounded by four surfaces of flow and two еquipotential surfaces is obtained. These correlations are effective in implementation of the parameters of the filtration process, namely — time of protective action of load, sizes of filter etc. and also for theoretical researches in the cases of prevailing convection and sorption components of the corresponding process to compare with diffusion and adsorption processes, that take place in a majority of filtration devices. On this basis the corresponding computer experiment, the results of which are confirmed by the known fact that the effectiveness of filter work depends substantially on the choice of its form, was carried out.
В работе предложено пространственное обобщение математической модели Минца для "быстрого фильтра" с пористой загрузкой, имеющего форму криволинейного параллелепипеда. Получен алгоритм численно-асимптотического приближения решения соответствующей модельной задачи, которая описывается системой нелинейных сингулярно возмущенных дифференциальных уравнений типа «конвекция-диффузия-массообмен» для криволинейного параллелепипеда, ограниченного четырьмя поверхностями течения и двумя эквипотенциальными поверхностями. Полученные соотношения являются эффективными для проведения оптимизации параметров процесса фильтрации, в частности, времени защитного действия загрузки, размеров фильтра и т. п., а также теоретических исследований в случаях преобладания конвективных и сорбционных составных соответствующего процесса над диффузными и десорбционными, что имеет место в подавляющем большинстве фильтрирующих установок. На этом основании проведен соответствующий компьютерный эксперимент, результаты которого подтверждают существенную зависимость производительности работы фильтра от выбора его формы.
uk
Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
Фізико-математичне моделювання та інформаційні технології
Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування
Numeral asymptotic approach of the solution of spatial modelling problems of filtration process
Численно-асимптотическое приближение решения пространственных модельных задач процесса фильтрации
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування
spellingShingle Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування
Бомба, А.
Климюк, Ю.
Сафоник, А.
Сівак, В.
title_short Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування
title_full Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування
title_fullStr Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування
title_full_unstemmed Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування
title_sort числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування
author Бомба, А.
Климюк, Ю.
Сафоник, А.
Сівак, В.
author_facet Бомба, А.
Климюк, Ю.
Сафоник, А.
Сівак, В.
publishDate 2010
language Ukrainian
container_title Фізико-математичне моделювання та інформаційні технології
publisher Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
format Article
title_alt Numeral asymptotic approach of the solution of spatial modelling problems of filtration process
Численно-асимптотическое приближение решения пространственных модельных задач процесса фильтрации
description У роботі запропоновано просторове узагальнення математичної моделі Мінца для "швидкого фільтра" з пористим завантаженням, що має форму криволінійного паралелепіпеда. Отримано алгоритм числово-асимптотичного наближення розв’язку відповідної модельної задачі, що описується системою нелінійних сингулярно збурених диференціальних рівнянь типу «конвекція-дифузія-масообмін» для криволінійного паралелепіпеда, обмеженого чотирма поверхнями течії та двома еквіпотенціальними поверхнями. Знайдені співвідношення є ефективні для проведення оптимізації параметрів процесу фільтрування, зокрема, часу захисної дії завантаження, розмірів фільтра тощо, а також теоретичних досліджень у випадках переважання конвективних і сорбційних складників відповідного процесу над дифузійними та десорбційними, що властиво в переважній більшості фільтрувальних установок. На цій основі проведено відповідний комп’ютерний експеримент, результати якого підтверджують відомий факт, що продуктивність роботи фільтра суттєво залежить від вибору його форми. The special generalization of Minc mathematical model for a «rapid filter» with porous loading, having a form of curvilinear parallelepiped is proposed. The algorithm of the numeral-asymptotic approximate solution of the corresponding model problem, which is described by a system of nonlinear singular perturbed differential equalizations of the type "convection-diffusion-mass exchange" for a curvilinear parallelepiped, bounded by four surfaces of flow and two еquipotential surfaces is obtained. These correlations are effective in implementation of the parameters of the filtration process, namely — time of protective action of load, sizes of filter etc. and also for theoretical researches in the cases of prevailing convection and sorption components of the corresponding process to compare with diffusion and adsorption processes, that take place in a majority of filtration devices. On this basis the corresponding computer experiment, the results of which are confirmed by the known fact that the effectiveness of filter work depends substantially on the choice of its form, was carried out. В работе предложено пространственное обобщение математической модели Минца для "быстрого фильтра" с пористой загрузкой, имеющего форму криволинейного параллелепипеда. Получен алгоритм численно-асимптотического приближения решения соответствующей модельной задачи, которая описывается системой нелинейных сингулярно возмущенных дифференциальных уравнений типа «конвекция-диффузия-массообмен» для криволинейного параллелепипеда, ограниченного четырьмя поверхностями течения и двумя эквипотенциальными поверхностями. Полученные соотношения являются эффективными для проведения оптимизации параметров процесса фильтрации, в частности, времени защитного действия загрузки, размеров фильтра и т. п., а также теоретических исследований в случаях преобладания конвективных и сорбционных составных соответствующего процесса над диффузными и десорбционными, что имеет место в подавляющем большинстве фильтрирующих установок. На этом основании проведен соответствующий компьютерный эксперимент, результаты которого подтверждают существенную зависимость производительности работы фильтра от выбора его формы.
issn 1816-1545
url https://nasplib.isofts.kiev.ua/handle/123456789/22274
citation_txt Числово-асимптотичне наближення розв’язків просторових задач процесу фільтрування / А. Бомба, Ю. Климюк, А. Сафоник, В. Сівак // Фіз.-мат. моделювання та інформ. технології. — 2010. — Вип. 11. — С. 29-38. — Бібліогр.: 17 назв. — укр.
work_keys_str_mv AT bombaa čislovoasimptotičnenabližennârozvâzkívprostorovihzadačprocesufílʹtruvannâ
AT klimûkû čislovoasimptotičnenabližennârozvâzkívprostorovihzadačprocesufílʹtruvannâ
AT safonika čislovoasimptotičnenabližennârozvâzkívprostorovihzadačprocesufílʹtruvannâ
AT sívakv čislovoasimptotičnenabližennârozvâzkívprostorovihzadačprocesufílʹtruvannâ
AT bombaa numeralasymptoticapproachofthesolutionofspatialmodellingproblemsoffiltrationprocess
AT klimûkû numeralasymptoticapproachofthesolutionofspatialmodellingproblemsoffiltrationprocess
AT safonika numeralasymptoticapproachofthesolutionofspatialmodellingproblemsoffiltrationprocess
AT sívakv numeralasymptoticapproachofthesolutionofspatialmodellingproblemsoffiltrationprocess
AT bombaa čislennoasimptotičeskoepribliženierešeniâprostranstvennyhmodelʹnyhzadačprocessafilʹtracii
AT klimûkû čislennoasimptotičeskoepribliženierešeniâprostranstvennyhmodelʹnyhzadačprocessafilʹtracii
AT safonika čislennoasimptotičeskoepribliženierešeniâprostranstvennyhmodelʹnyhzadačprocessafilʹtracii
AT sívakv čislennoasimptotičeskoepribliženierešeniâprostranstvennyhmodelʹnyhzadačprocessafilʹtracii
first_indexed 2025-12-01T04:52:49Z
last_indexed 2025-12-01T04:52:49Z
_version_ 1850859327690113025