High oxygen load causes damage to lens epithelium which is reduced by antioxidants
Цель: Изучить механизмы воздействия кислорода на хрусталик и возможный защитный эффект цинк-дезферриоксамина (Zn-DFO). Методы: Хрусталики, полученные из глаза быка, хранили на культуре, полученной из тканей данного органа. Хрусталик подвергали воздействию значительной кислородной нагрузки либо в пр...
Збережено в:
| Опубліковано в: : | Актуальні проблеми транспортної медицини |
|---|---|
| Дата: | 2005 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-хімічний інститут ім. О.В. Богатського НАН України
2005
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/22387 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | High oxygen load causes damage to lens epithelium which is reduced by antioxidants / E. Bormusov, S. Schaal, A. Dovrat // Актуальні проблеми транспортної медицини. — 2005. — № 2. — С. 120-126. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-22387 |
|---|---|
| record_format |
dspace |
| spelling |
Bormusov, E. Schaal, S. Dovrat, A. 2011-06-21T22:01:43Z 2011-06-21T22:01:43Z 2005 High oxygen load causes damage to lens epithelium which is reduced by antioxidants / E. Bormusov, S. Schaal, A. Dovrat // Актуальні проблеми транспортної медицини. — 2005. — № 2. — С. 120-126. — Бібліогр.: 13 назв. — англ. 1818-9385 https://nasplib.isofts.kiev.ua/handle/123456789/22387 612.014.464:611-018.7:678.048 Цель: Изучить механизмы воздействия кислорода на хрусталик и возможный защитный эффект цинк-дезферриоксамина (Zn-DFO). Методы: Хрусталики, полученные из глаза быка, хранили на культуре, полученной из тканей данного органа. Хрусталик подвергали воздействию значительной кислородной нагрузки либо в присутствии, либо без комплекса Zn-DFO (20 ЦІМ). Оптические свойства хрусталика оценивали через семь дней от начала выращивания культуры. По завершении периода, хрусталик извлекали и проводили его морфологический и ферментный анализ. Результаты: В хрусталиках, подвергнутых воздействию больших концентраций кислорода, наблюдали уменьшение оптических свойств и изменение активности энзимов эпителия изучаемого органа. При анализе активности энзимов изучали цикл Кребса, течение гликолиза и состояние АТФ пограничных мембран. Добавление Zn-DFO к культуре клеток до начала воздействия кислородом, элиминировало большую часть кислородозависимых повреждений. Выводы: Полученные результаты могут указывать на возможную роль Zn-DFO как защитного агента при возникновении кислород-индуцированных катаракт. Purpose: To investigate the mechanisms involved in the effects of oxygen on the eye lens and the possible protective effects of Zinc-desferrioxamine (Zn-DFO) using lens organ culture system. Methods: Bovine lenses, kept in an organ culture system, were exposed to high oxygen load in the presence or absence of Zn-DFO complex (20 MM). Lens optical quality was assessed throughout the 7 days of the culture period. At the end of the culture, lenses were taken for morphological and enzyme analysis. Results: Decreased lenticular optical quality and changes in lens epithelium enzymatic activities were observed in lenses exposed to high oxygen concentration. The enzymes analyzed were from Krebs cycle, glycolysis pathway and membrane bound ATPase. Addition of Zn-DFO to the culture before the exposure to oxygen eliminated most of the oxygen-induced damage. 126) Conclusions: The present results may indicate a possible role of Zn-DFO as a protective agent against oxygen-induced cataract formation. en Фізико-хімічний інститут ім. О.В. Богатського НАН України Актуальні проблеми транспортної медицини Клиническая медицина High oxygen load causes damage to lens epithelium which is reduced by antioxidants Значительные кислородные нагрузки вызывают повреждения эпителия хрусталика, которые устраняются антиоксидантами Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
High oxygen load causes damage to lens epithelium which is reduced by antioxidants |
| spellingShingle |
High oxygen load causes damage to lens epithelium which is reduced by antioxidants Bormusov, E. Schaal, S. Dovrat, A. Клиническая медицина |
| title_short |
High oxygen load causes damage to lens epithelium which is reduced by antioxidants |
| title_full |
High oxygen load causes damage to lens epithelium which is reduced by antioxidants |
| title_fullStr |
High oxygen load causes damage to lens epithelium which is reduced by antioxidants |
| title_full_unstemmed |
High oxygen load causes damage to lens epithelium which is reduced by antioxidants |
| title_sort |
high oxygen load causes damage to lens epithelium which is reduced by antioxidants |
| author |
Bormusov, E. Schaal, S. Dovrat, A. |
| author_facet |
Bormusov, E. Schaal, S. Dovrat, A. |
| topic |
Клиническая медицина |
| topic_facet |
Клиническая медицина |
| publishDate |
2005 |
| language |
English |
| container_title |
Актуальні проблеми транспортної медицини |
| publisher |
Фізико-хімічний інститут ім. О.В. Богатського НАН України |
| format |
Article |
| title_alt |
Значительные кислородные нагрузки вызывают повреждения эпителия хрусталика, которые устраняются антиоксидантами |
| description |
Цель: Изучить механизмы воздействия кислорода на хрусталик и возможный защитный эффект цинк-дезферриоксамина (Zn-DFO).
Методы: Хрусталики, полученные из глаза быка, хранили на культуре, полученной из тканей данного органа. Хрусталик подвергали воздействию значительной кислородной нагрузки либо в присутствии, либо без комплекса Zn-DFO (20 ЦІМ). Оптические свойства хрусталика оценивали через семь дней от начала выращивания культуры. По завершении периода, хрусталик извлекали и проводили его морфологический и ферментный анализ.
Результаты: В хрусталиках, подвергнутых воздействию больших концентраций кислорода, наблюдали уменьшение оптических свойств и изменение активности энзимов эпителия изучаемого органа. При анализе активности энзимов изучали цикл Кребса, течение гликолиза и состояние АТФ пограничных мембран. Добавление Zn-DFO к культуре клеток до начала воздействия кислородом, элиминировало большую часть кислородозависимых повреждений.
Выводы: Полученные результаты могут указывать на возможную роль Zn-DFO как защитного агента при возникновении кислород-индуцированных катаракт.
Purpose: To investigate the mechanisms involved in the effects of oxygen on the eye lens and the possible protective effects of Zinc-desferrioxamine (Zn-DFO) using lens organ culture system.
Methods: Bovine lenses, kept in an organ culture system, were exposed to high oxygen load in the presence or absence of Zn-DFO complex (20 MM). Lens optical quality was assessed throughout the 7 days of the culture period. At the end of the culture, lenses were taken for morphological and enzyme analysis.
Results: Decreased lenticular optical quality and changes in lens epithelium enzymatic activities were observed in lenses exposed to high oxygen concentration. The enzymes analyzed were from Krebs cycle, glycolysis pathway and membrane bound ATPase. Addition of Zn-DFO to the culture before the exposure to oxygen eliminated most of the oxygen-induced damage.
126)
Conclusions: The present results may indicate a possible role of Zn-DFO as a protective agent against oxygen-induced cataract formation.
|
| issn |
1818-9385 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/22387 |
| citation_txt |
High oxygen load causes damage to lens epithelium which is reduced by antioxidants / E. Bormusov, S. Schaal, A. Dovrat // Актуальні проблеми транспортної медицини. — 2005. — № 2. — С. 120-126. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT bormusove highoxygenloadcausesdamagetolensepitheliumwhichisreducedbyantioxidants AT schaals highoxygenloadcausesdamagetolensepitheliumwhichisreducedbyantioxidants AT dovrata highoxygenloadcausesdamagetolensepitheliumwhichisreducedbyantioxidants AT bormusove značitelʹnyekislorodnyenagruzkivyzyvaûtpovreždeniâépiteliâhrustalikakotoryeustranâûtsâantioksidantami AT schaals značitelʹnyekislorodnyenagruzkivyzyvaûtpovreždeniâépiteliâhrustalikakotoryeustranâûtsâantioksidantami AT dovrata značitelʹnyekislorodnyenagruzkivyzyvaûtpovreždeniâépiteliâhrustalikakotoryeustranâûtsâantioksidantami |
| first_indexed |
2025-11-25T22:16:31Z |
| last_indexed |
2025-11-25T22:16:31Z |
| _version_ |
1850561794268987392 |
| fulltext |
ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã.
120
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005
âàííÿ õðîí³÷íîãî àáàêòåð³ïëüíîãî ïðîñòàòè-
òó ç ñóïóòí³ì îñåîõîíäðîçîì ïîïåðåêîâî-êðè-
æîâîãî â³ää³ëó õðåáòà ç âèêîðèñòàííÿì ñó÷àñ-
íèõ ìåòîä³â ô³ç³îòåðàﳿ: ìàãí³òîëàçåðíî¿,
õðîìîìàãí³òíî¿, ÌÕÒ – ðåôëåêñîòåðàﳿ, ïíåâ-
ìîâ³áðîìàñàæó ïåðåäì³õóðîâî¿ çîëîçè, ôàð-
ìàêîàêóïóíêòóðè Sol.Traumel – S. Íàâåäåíî
ðåçóëüòàòè êë³í³÷íîãî äîñë³äæåííÿ òà ïî-
ð³âíÿëüíî õàðàêòåðèñòèêó çàñòîñóâàííÿ öèõ
ìåòîä³â â ïîð³âíÿíí³ ç òðàäèö³éíîþ ô³ç³îòåðà-
ﳺþ: ä³àäèíàì³÷í³ òîêè, ñ³íóñî³äàëüíî – ìîäó-
ëüîâàí³ òîêè, óëüòðàçâóêîâà òåðàï³ÿ; äîâåäå-
íà á³ëüø âèñîêà êë³í³÷íà åôåêòèâí³ñòü ñóì³ñ-
íîãî âèêîðèñòàííÿ ìåòîä³â ñó÷àñíî¿ ô³ç³îòå-
ðàﳿ.
IntroductionIntroductionIntroductionIntroductionIntroduction
An adult lens contains two morphological-
ly distinct compartments, the epithelium and the
fiber-cell mass. The fiber-cell mass provides the
lens with its functional phenotype and transpar-
ency. Metabolically, the epithelium is the more
active compartment of the ocular lens. This sin-
gle layer of cells, in addition to acting as a meta-
bolic engine that sustains the physiological health
of this tissue, also works as a source of stem
cells, providing precursor cells, which through
molecular and morphological differentiation give
rise to fiber cells. Morphological simplicity, de-
fined developmental history and easy access to
the researcher make this epithelium a material
for investigation of universal questions of cell
growth, development, epithelial function, cancer
and aging. There are two important aspects of
the lens epithelium that make it highly relevant to
the modern biologist. Firstly, there are no known
clinically recognizable cancers of the ocular lens.
The lack of vascular system may explain the ab-
sence of tumors in this tissue, but this provides
only a teleological basis to a very important ques-
tion for which the answers must reside in the
molecular and physiology of the lens epithelial
cells. Secondly, lens epithelium as a morpholog-
ical entity in the human lens is first recognizable
in the 5th-6th week of gestation. It stays in this
morphological state as the anterior epithelium of
the lens for the rest of life, making it an attractive
tissue for the study of the effects of aging on ep-
ithelial function (1).
Studies on human patients and experimen-
tal animals indicate that hyperbaric O
2
can dam-
age the lens nucleus and the lens epithelium in
vivo. When the cells were exposed to 50 atm O
2
(99% O
2
+ 1% CO
2
) for 3 hr, there were no imme-
diate effects on lens morphology, viability and
transport processes (uptake of 86Rb and 14C-al-
pha AIB). In addition, the O
2
treatment did not
lower the high level of reduced glutathione or in-
crease the low level of oxidized glutathione. How-
ever, 50 atm O
2
did produce a near doubling in
the glycolytic rate which maintained ATP at lev-
els only slightly lower than normal (2). In previ-
ous studies we found that high oxygen load has
a toxic effect on bovine lenses in organ culture.
Changes marking toxicity follow the route of ox-
ygen diffusion into the lens, from the periphery
to the center (3). The current study investigated
the mechanisms of hyperbaric oxygen on lens
epithelial enzymes and the effects of the antioxi-
dant Zinc-desferrioxamine (Zn-DFO) using a
lens organ culture system.
MethodsMethodsMethodsMethodsMethods
Experimental treatments
Intact bovine lenses (one year old) in or-
gan culture conditions were included in the
present study. We divide the lenses into3 groups:
(1) Hyperbaric oxygen (HBO) exposureHyperbaric oxygen (HBO) exposureHyperbaric oxygen (HBO) exposureHyperbaric oxygen (HBO) exposureHyperbaric oxygen (HBO) exposure
groupgroupgroupgroupgroup: 25 lenses exposed daily to HBO for 4
days. Each exposure session consisted of 120
minutes 100% oxygen in a pressure chamber at
2.5 ATA. During the exposure lenses were kept
in PBS.
(2) HBO exposure group with Zn-DFO:HBO exposure group with Zn-DFO:HBO exposure group with Zn-DFO:HBO exposure group with Zn-DFO:HBO exposure group with Zn-DFO: 25
lenses exposed daily to HBO for 4 days. Each
exposure included 120 minutes of 100% oxygen
in a pressure chamber at 2.5 ATA. During HBO
exposure lenses were kept in a Zn-DFO 2.5 mg/
liter in PBS.
(3). Control group.Control group.Control group.Control group.Control group. 50 lenses incubated
daily for 4 days in PBS for 120 min.
Organ Culture System
Each lens was placed in a glass and silicon
rubber chamber containing 24ml of culture me-
dium (M 199) with Earl’s balanced salt solution,
supplemented with 5.96g/L HEPES, 3% dialyzed
fetal calf serum and antibiotics (penicillin 100 U/
ml and streptomycin 0.1 mg/ml). Lenses were
completely immersed in culture medium both
ÓÄÊ 612.014.464:611-018.7:678.048
HIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICHHIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICHHIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICHHIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICHHIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICH
IS REDUCED BY ANTIOXIDANTSIS REDUCED BY ANTIOXIDANTSIS REDUCED BY ANTIOXIDANTSIS REDUCED BY ANTIOXIDANTSIS REDUCED BY ANTIOXIDANTS
Elvira Bormusov, Shlomit Schaal and Ahuva DovratElvira Bormusov, Shlomit Schaal and Ahuva DovratElvira Bormusov, Shlomit Schaal and Ahuva DovratElvira Bormusov, Shlomit Schaal and Ahuva DovratElvira Bormusov, Shlomit Schaal and Ahuva Dovrat
Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
This study was supported in part by the Guzik Ophthalmology Research Fund
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005
ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã.
121
below and above. The medium was changed dai-
ly. The lenses were incubated at 35°C. Experi-
mental treatments started after pre-incubation of
24 hours.
Pressure ChamberPressure ChamberPressure ChamberPressure ChamberPressure Chamber
Bovine lenses in the specially designed
culture chambers were exposed to hyperbaric
oxygen in a sealed hyperbaric oxygen pressure
chamber. Pressure was raised to 2.5 ATA over 20
minutes. The duration of each exposure was 120
minutes. During the exposures, the temperature
inside the chamber remained constant. Oxygen
saturation inside the pressure chamber was mon-
itored and kept constant throughout the expo-
sure session.
During the exposure to hyperbaric oxygen
the culture medium was changed to PBS for 120
minutes in all study and control lenses. Lenses
treated with Zn-DFO were put in PBS containing
2.5mg/liter Zn-DFO. Study lenses were exposed
to oxygen at the pressure chamber and control
lenses kept at room air during the exposure. Me-
dium was changed back to original medium im-
mediately after exposure.
Lens optical quality monitoring
Lens optical quality was monitored daily
throughout the 7 days of the culture period. Lens
optical measurements were determined by an
automated scanning laser system that recorded
both relative transmission and focal length across
the lens (The Scan-ToxTM In Vitro Assay System,
Harvard Apparatus, Holliston, MA).
Lens epithelium morphology and enzyme
analysis
On day 7 of the culture period, lenses were
taken for morphological and enzyme analysis.
Total flat preparations of the front capsule epi-
thelium monolayer of lenses from the different
treatments were evaluated. When evaluating the
different grade of its differentiation was taken into
account, i.e. topographical features of central in-
termediate and equatorial zones (fig. 1).
We followed the histochemical localizations
of the enzymes: succinic
dehydrogenase (SDH),
lactate dehydrogenase
(LDH), glucose-6-phos-
phate dehydrogenase (G-
6-PD), hexokinase (HK)
and adenosine triphos-
phatase (ATPase). For
analysis we used the clas-
sical methods of Pearse
(4). Ouabain (10-4 M), the
ATPase inhibitor was used
as control samples for AT-
Pase activity.
Quantitative analysis of the intensity of the
reactions at epithelial central and equatorial
zones was done by Image-Pro Plus program,
Version 4.0 for Windows, by measuring optical
density in each cell, following by mathematical
processing in Microsoft Excel. A change was de-
fined as significant if the difference between con-
trol and treated groups reached value of P < 0.05.
ResultsResultsResultsResultsResults
Figures 2a and 2b demonstrate the activi-
ties of G6PD at the center and equators of the
lens epithelium of control lenses, HBO treated
lenses and lenses treated with HBO and Zn-DFO.
There is not much difference of G6PD ac-
tivities at the center of the lens epithelium for the
different treatments however at the equators af-
ter exposure to HBO, G6PD activity increased by
almost 10% and in the presence of Zn-DFO the
activity increased by 25%. (Fig. 2b).
Cells were well stained and diformazan
grains were situated on the whole area of the cy-
toplasm (Fig. 2a). The area of the cells exposed
to HBO did not change much but was increased
in the presence of the antioxidant Zn-DFO. The
changes in cells area were higher at the equa-
tors of the lens epithelium (Fig. 2c).
The diformazan grains in the cells after
HBO treatment did not show much contrast com-
pared to controls and lenses treated with anti-
oxidant.
SDH activity is demonstrated in Fig 3a. Di-
formazan location in the cells demonstrated by
blue product formed after recovering of the
ditetrazolium salts (fig. 3a).
Treatment by HBO decreased SDH activi-
ties in central zone of lens epithelium by 17.9%
and in equatorial zone by 21.5%. In lenses treat-
ed with HBO in the presence of the antioxidant,
SDH activities were similar to the activities of the
control group (fig. 3b).
The activity of LDH is demonstrated in Fig-
ure 4a.
Activity of LDH (enzyme with high substrate
Fig. 1. The eye lens.
ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã.
122
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005
Control HBO HBO + Zn-DFO
A
B
Fig. 2a. G6PD activities of control lenses, HBO treated lenses and
HBO+Zn DFO treated lenses: (A) Center of lens epithelium (B)
Equators of lens epithelium.
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
Center Equator
In
te
gr
at
io
n
O
f O
pt
ic
al
D
en
si
ty
Control HBO HBO+ZnDFO
G6PD Day 7
Fig. 2b. G6PD activities of lens epithelial cells in control lenses and lenses in-
cubated with HBO and HBO with Zn-DFO.
0
20
40
60
80
100
120
Center Equator
A
re
a
O
f
Le
ns
E
pi
th
el
iu
m
C
el
ls
Control HBO HBO+Zn-DFO
Fig. 2c.-Changes in epithelial cells area, after HBO treatment and after treat-
ment with HBO in the presence of the antioxidant (Zn-DFO) – G6PD activity.
specificity), is reduced by
HBO treatment and also by
HBO treatment in the pres-
ence of the antioxidant. Ac-
tivity of LDH was decreased
markedly (32.7%) in equato-
rial zone after treating with
HBO and antioxidant (Fig.
4b).
Distinctly expressed
changes of hexokinase activ-
ities were found in the epithe-
lial monolayer after HBO
treatment (Fig.5b).
Hexokinase activities
increased almost twice in
both center and equators.
The localization of hexoki-
nase in the cells is demon-
strated in Fig.5a. Hexokinase
is displaced to the peripher-
ies of the cells. The size of the
cells (Fig 5c), show increased
area after HBO treatment.
The observable rein-
forcement of the ATPase ac-
tivities after HBO and HBO+
Zn-DFO treatments was ex-
pressed by increased quan-
tity of the black deposits in
the cells (Fig.6), in compari-
son to control group.
DiscussionDiscussionDiscussionDiscussionDiscussion
In our studies lenses in
organ culture conditions
were subjected to high oxy-
gen load and in some exper-
iments the antioxidant Zn-
DFO was added to the oxy-
gen treated lenses for check-
ing the possible ability to pro-
tect the lenses from oxygen
damage. We demonstrated
that the lens epithelium re-
acted differently with differ-
ent enzymesal: also Zn-DFO
presence during oxygen ex-
posure did not always pre-
vent the oxygen changes.
All enzyme activities
were analyzed in lens epithe-
lium after 7 days in culture.
Hexokinase activities in-
creased as a result of HBO
treatment. Increased hexoki-
nase activity means in-
creased glucose phosphor-
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005
ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã.
123
ylation. Also G6PD showed in-
crease in activity which demon-
strate activation of hexose mono-
phosphate shunt.
In the study of Marsili et al (5)
it was found that the oxidative dam-
age may be the part of the re-
sponse to elevated levels of the
glucose. Giblin et al.(6) exposed
lenses to 50 atm of O
2
and pro-
duced a three-fold stimulation of
hexose mono-phosphate shunt
activity, equal to that which has
been reported for treatment of
lenses with 0.06 mM H
2
O
2
.
The studies of Cappiello et
al.fe: (7) by chromatography meth-
od on Matrex Orange resin allowed
the separation of glutathione mod-
ified and native aldose reductase
in crude extracts of bovine lens.
The analysis of hyperbaric oxygen
treated lenses revealed the forma-
tion in the intact cultured lens of an
enzyme form displaying affinity
column binding properties, specif-
ic activity, sensitivity to inhibition
and susceptibility to activation by
thiol reducing agents, all compa-
rable to glutathione modified al-
dose-reductase. The extent of the
enzyme modification increased
with the time of the oxidative treat-
ment and was maximal in the lens
nucleus.
Recent studies of Giblin (8)
have indicated an important hy-
droxyl radical-scavenging function
for GSH in lens epithelial cells, in-
dependent of the cells’ ability to
detoxify H
2
O
2
. Depletion of GSH or
inhibition of the redox cycle allows
low levels of oxidant to damage
lens epithelial targets such as Na/
K-ATPase, certain cytoskeletal
proteins and proteins associated
with normal membrane permeabil-
ity. The level of GSH in the nucleus
of the lens is relatively low, partic-
ularly in the aging lens. Combined
with low activity of the glutathione
redox cycle in this region, makes
the nucleus especially vulnerable
to oxidative stress, as has been
demonstrated with use of in vivo
experimental animal models such
as hyperbaric oxygen, UVA light
Control HBO HBO + Zn-DFO
Fig. 3a. SDH activities in cells of lens epithelium equator zone
at three different treatments: Control, HBO exposed lenses and
HBO treated lenses in the presence of Zn-DFO.
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
Center Equator
In
te
gr
at
io
n
O
f O
pt
ic
al
D
en
si
ty
Control HBO HBO+Zn-DFO
Fig. 3b. Integration of optical density of SDH activities in lens epithelial cells
under influence of the HBO and the antioxidant ( Zn-DFO)..
Control HBO HBO + Zn-DFO
Fig. 4a. LDH activities in the equatorial zone of lens epithelium cells
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
Center Equator
In
te
gr
at
io
n
O
f O
pt
ic
al
D
en
si
ty
Control HBO HBO+A
LDH Day 7
Fig. 4b. Integration of optical density of LDH activities in the cells
of lens epithelium under influence of the HBO and HBO+Zn-DFO.
ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã.
124
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005
and the glutathione peroxidase
knockout mouse. Effects observed
in these models, which are current-
ly being utilized to investigate the
mechanism of formation of human
senile nuclear cataract, include an
increase in lens nuclear disulfide,
damage to nuclear membranes
and an increase in nuclear light
scattering. A need exists for devel-
opment of therapeutic agents to
slow age-related loss of antioxi-
dant activity in the nucleus of the
human lens to delay the onset of
cataract.
Azzam et al. (9) investigated
morphological changes in the eye
lens caused by UV-A. Analysis by
scanning electron microscopy
found irregularity of fiber morphol-
ogy in lenses exposed to UV-A ir-
radiation (but not in control lens-
es). They concluded that UV-A
caused damage to cell mem-
branes of the lens and alterations
in lens optics, which may subse-
quently lead to senile cataract for-
mation. Lens NaK-ATPase activity
can recover from damage caused
by UV-A at 365 nm. When the lens-
es received irradiation of 33 J/cm2,
NaK-ATPase activity recovered
from the damage during the culture
period only at the center and not
at the equators of the epithelium
(10).
HBO enhanced metabolic
activity of lens epithelial cells that
accompanied with changes of the
cells size. The same fact is known
from the work of Slaaf et al. (11).
They detected the relative number
of capillaries. Occlusion is unity at
low local oxygen, and diminishes
with increasing local oxygen to be-
come 0 at an oxygen tension of
about 70 mm Hg.
Three doses of daily x-ray ir-
radiation caused 1 week later, mild
changes in the lens such as une-
ven height of epithelial cells, irreg-
ular bow structures, and swelling of
cortical fibers were observed. Eight
weeks later, irregular bow config-
uration, posterior dislocation of
nuclei, severe epithelial loss and
marked swelling of cortical fibers
Control HBO
A
B
Fig. 5a. Activities of hexokinase at the center (A) and equa-
tors (B) of lens epithelial cells of control and HBO treated
lenses.
0
200000
400000
600000
800000
1000000
1200000
1400000
1600000
1800000
Center EquatorIn
te
gr
at
io
n
O
f O
pt
ic
al
D
en
si
ty
Control HBO
Hexokinase Day 7
Fig. 5b. Integration of optical density of hexokinase activity in
lens epithelium of control and HBO treated lenses.
0
2000
4000
6000
8000
10000
12000
Center Equator
A
re
a
C
el
ls
E
pi
th
el
iu
m
L
en
s
Control HBO
Hexokinase Day 7
Fig. 5c. Cells area analysis in lens epithelium of control and
HBO treated lenses (Hexokinase activity)
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005
ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã.
125
were observed at the equatorial area. Epithelial
loss and deformed nuclei of the epithelium were
observed in the central area (Morita et al.12).
Struck et al (13) studied hematoxylin-eosin
stained anterior central lens capsules with at-
tached lens epithelial cells by light microscopy
for cell parameters such as cell density (mor-
phometry), nucleus area (A0), nucleus volume
(V), cell area (A) and nucleus-plasma-ratio. The
mean cell density in type-II diabetics (group I) is
3691 +/- 346 cells/mm2 and in non-diabetics
(group II) 4162 +/- 504 cells/mm2, respectively
(p = 0.001). The total female mean cell density
(4036 +/- 525 cells/mm2) was not significantly
higher than the male (3788 +/- 412 cells/mm2).
A decrease of the mean cell density could be at-
tributed to age only in the non-diabetic group.
With regard to the type of cataract the posterior
sub-capsular cataract shows the lowest mean
cell density (3620 +/- 333 cells/mm2) and the
nuclear cataract (4250 +/- 513 cells/mm2) the
highest, respectively. The medium nucleus area
and -volume and cell area are in the type-II dia-
betic group significantly larger than in non-dia-
betics.
The results of our observations, demon-
strated positive effects of Zn-DFO during HBO
treatment. This factor under the right conditions
can serve as an effective protector for reactiva-
tion and normalization of the different functions
of the visual organ. It is knowledge that the
change of glycolysis pathway directed to reduc-
tion of the “effect of Paster” that is caused of ox-
ygen insufficiency of cells. May be possible that
in smaller dose and inten-
sities HBO treatment, can
be used in combination
with Zn-DFO as conductor
of the drug to the eye with
different pathology , which
are accompanied the
breaches oxidation-re-
conditioning process.
ReferencesReferencesReferencesReferencesReferences
1.1.1.1.1. Padgaonkar V, Giblin
FJ, Reddan JR, Dziedzic
DC. Hyperbaric oxygen in-
hibits the growth of cul-
tured rabbit lens epithelial
cells without affecting glu-
tathione level. Exp Eye
Res. 1993 Apr;56(4):443-
52
2.2.2.2.2. Schaal S, Beiran I,
Rubinstein I, Miller B,
Dovrat A. Lenticular oxy-
gen toxicity. Invest Ophthalmol Vis Sci. 2003
Aug;44(8):3476-84.
3.3.3.3.3. A.G. Everson Pearse. Histochemistry. Theo-
retical and Applied.3 editon. Ediburgh ahd
London, 1972
4.4.4.4.4. Bhat SP. The ocular lens epitheli um. Biosci
Rep. 2001 Aug;21(4):537-63
5.5.5.5.5. Marsili S, Salganik RI, Albright CD, Freel CD,
Johnsen S, Peiffer RL, Costello MJ. Cataract
formation in a strain of rats selected for high
oxidative stress. Exp Eye Res. 2004
Nov;79(5):595-612.
6.6.6.6.6. Giblin FJ, Schrimscher L, Chakrapani B, Red-
dy VN. Exposure of rabbit lens to hyperbaric
oxygen in vitro: regional effects on GSH level.
Invest Ophthalmol Vis Sci. 1988
Aug;29(8):1312-9.
7.7.7.7.7. Cappiello M, Vilardo PG, Cecconi I, Leverenz
V, Giblin FJ, Del Corso A, Mura U. Occurrence
of glutathione-modified aldose reductase in
oxidatively stressed bovine lens. Biochem Bi-
ophys Res Commun. 1995 Feb
15;207(2):775-82.
8.8.8.8.8. Giblin FJ. Glutathione: a vital lens antioxidant.
J Ocul Pharmacol Ther. 2000 Apr;16(2):121-
35.
9.9.9.9.9. Azzam N, Levanon D, Dovrat A Effects of UV-
A irradiation on lens morphology and optics.
Exp Gerontol. 2004 Jan;39(1):139-46.
10.10.10.10.10. Dovrat A, Weinreb O. Effects of UV-A radi-
ation on lens epithelial NaK-ATPase in organ
culture. Invest Ophthalmol Vis Sci. 1999
Jun;40(7):1616-20.
11.11.11.11.11. Slaaf DW, Bosman J, Tangelder GJ, oude
Control HBO HBO + Zn-DFO
A
B
Fig. 6. Na-K-ATPase activities at the center (A) and equators (B) of
lens epithelial cells exposed to three treatments: control, HBO expo-
sure and exposure to HBO in the presence of the antioxidant ZN-DFO
(15x40). ATPase (Day 7)
ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã.
126
ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005
Egbrink MG, Reneman RS. Oxygen- and pres-
sure-dependent functional capillary density in
rabbit tenuissimus muscle. Int J Microcirc Clin
Exp. 1995 Sep-Oct;15(5):271-5
12.12.12.12.12. Morita T, Hirayama S, Uga S, Shimizu K,
Wakasugi A, Nakayama S. The effect of con-
tinuous low doses of X-ray irradiation on the
rat lens. Jpn J Ophthalmol. 2003 Sep-
Oct;47(5):427-36.
13.13.13.13.13. Struck HG, Heider C, Lautenschlager C
[Changes in the lens epithelium of diabetic
and non-diabetic patients with various forms
of opacities in senile cataract] Klin Monatsbl
Augenheilkd. 2000 Apr;216(4):204-9.
SummarySummarySummarySummarySummary
HIGH OXYGEN LOAD CAUSES DAMAGE TO
LENS EPITHELIUM WHICH IS REDUCED BY
ANTIOXIDANTS
Elvira Bormusov, Shlomit Schaal and Ahuva
Dovrat
Purpose: Purpose: Purpose: Purpose: Purpose: To investigate the mechanisms
involved in the effects of oxygen on the eye lens
and the possible protective effects of Zinc-des-
ferrioxamine (Zn-DFO) using lens organ culture
system.
Methods:Methods:Methods:Methods:Methods: Bovine lenses, kept in an organ
culture system, were exposed to high oxygen
load in the presence or absence of Zn-DFO com-
plex (20 µM). Lens optical quality was assessed
throughout the 7 days of the culture period. At
the end of the culture, lenses were taken for mor-
phological and enzyme analysis.
Results: Results: Results: Results: Results: Decreased lenticular optical qual-
ity and changes in lens epithelium enzymatic ac-
tivities were observed in lenses exposed to high
oxygen concentration. The enzymes analyzed
were from Krebs cycle, glycolysis pathway and
membrane bound ATPase. Addition of Zn-DFO
to the culture before the exposure to oxygen elim-
inated most of the oxygen-induced damage.
Conclusions: Conclusions: Conclusions: Conclusions: Conclusions: The present results may in-
dicate a possible role of Zn-DFO as a protective
agent against oxygen-induced cataract forma-
tion.
ÐåôåðàòÐåôåðàòÐåôåðàòÐåôåðàòÐåôåðàò
ÇÍÀ×ÈÒÅËÜÍÛÅ ÊÈÑËÎÐÎÄÍÛÅ ÍÀÃÐÓÇÊÈ
ÂÛÇÛÂÀÞÒ ÏÎÂÐÅÆÄÅÍÈß ÝÏÈÒÅËÈß
ÕÐÓÑÒÀËÈÊÀ, ÊÎÒÎÐÛÅ ÓÑÒÐÀÍßÞÒÑß
ÀÍÒÈÎÊÑÈÄÀÍÒÀÌÈ
Ýëüâèðà Áîðìóñîâà, Øëîìèò Øààëü, Àõóâà
Äîâðàò
Öåëü: Èçó÷èòü ìåõàíèçìû âîçäåéñòâèÿ
êèñëîðîäà íà õðóñòàëèê è âîçìîæíûé
çàùèòíûé ýôôåêò öèíê-äåçôåððèîêñàìèíà
(Zn-DFO).
Ìåòîäû: Õðóñòàëèêè, ïîëó÷åííûå èç
ãëàçà áûêà, õðàíèëè íà êóëüòóðå, ïîëó÷åííîé
èç òêàíåé äàííîãî îðãàíà. Õðóñòàëèê
ïîäâåðãàëè âîçäåéñòâèþ çíà÷èòåëüíîé
êèñëîðîäíîé íàãðóçêè ëèáî â ïðèñóòñòâèè,
ëèáî áåç êîìïëåêñà Zn-DFO (20 µM).
Îïòè÷åñêèå ñâîéñòâà õðóñòàëèêà îöåíèâàëè
÷åðåç ñåìü äíåé îò íà÷àëà âûðàùèâàíèÿ
êóëüòóðû. Ïî çàâåðøåíèè ïåðèîäà, õðóñòàëèê
èçâëåêàëè è ïðîâîäèëè åãî ìîðôîëîãè÷åñêèé
è ôåðìåíòíûé àíàëèç.
Ðåçóëüòàòû: Â õðóñòàëèêàõ,
ïîäâåðãíóòûõ âîçäåéñòâèþ áîëüøèõ
êîíöåíòðàöèé êèñëîðîäà, íàáëþäàëè
óìåíüøåíèå îïòè÷åñêèõ ñâîéñòâ è èçìåíåíèå
àêòèâíîñòè ýíçèìîâ ýïèòåëèÿ èçó÷àåìîãî
îðãàíà. Ïðè àíàëèçå àêòèâíîñòè ýíçèìîâ
èçó÷àëè öèêë Êðåáñà, òå÷åíèå ãëèêîëèçà è
ñîñòîÿíèå ÀÒÔ ïîãðàíè÷íûõ ìåìáðàí.
Äîáàâëåíèå Zn-DFO ê êóëüòóðå êëåòîê äî
íà÷àëà âîçäåéñòâèÿ êèñëîðîäîì,
ýëèìèíèðîâàëî áîëüøóþ ÷àñòü êèñëîðîä-
çàâèñèìûõ ïîâðåæäåíèé.
Âûâîäû: Ïîëó÷åííûå ðåçóëüòàòû ìîãóò
óêàçûâàòü íà âîçìîæíóþ ðîëü Zn-DFO êàê
çàùèòíîãî àãåíòà ïðè âîçíèêíîâåíèè
êèñëîðîä-èíäóöèðîâàííûõ êàòàðàêò.
Îñòåîïîðîç ìåòàáîëè÷åñêîå çàáîëåâà-
íèå ñêåëåòà, ñîïðîâîæäàþùååñÿ ñíèæåíèåì
ìèíåðàëüíîé ïëîòíîñòè êîñòíîé òêàíè
(ÌÏÊÒ), ïðåâîñõîäÿùåå âîçðàñòíóþ è ïîëî-
âóþ íîðìû, ïðèâîäÿùåå ê âîçíèêíîâåíèþ
ïåðåëîìîâ ðàçëè÷íûõ îòäåëîâ ñêåëåòà, â òîì
÷èñëå ïîçâîíêîâ, óõóäøåíèþ êà÷åñòâà æèçíè
ëþäåé, çíà÷èòåëüíûì ìàòåðèàëüíûì çàòðà-
òàì íà ëå÷åíèå è ðåàáèëèòàöèþ [1,2,5,6,9]. Â
ÑØÀ åæåãîäíî óâåëè÷èâàþòñÿ çàòðàòû íà ëå-
÷åíèå è ðåàáèëèòàöèþ áîëüíûõ, ñâÿçàííûå ñ
ïåðåëîìàìè âñëåäñòâèå îñòåîïîðîçà. Òàê, â
òå÷åíèå 5 ëåò ýòà ñóììó âîçðîñëà ñ 10 äî 13,8
ìëð äîëëàðîâ â ãîä [4,10]. Ïî ïðåäâàðèòåëü-
íûì äàííûì îñòåîïîðîç âñòðå÷àåòñÿ ó 11-
12% íàñåëåíèÿ Åâðîïåéñêèõ ñòðàí. Ñóùå-
ñòâóåò òåíäåíöèÿ ê ðàñïðîñòðàíåíèþ çàáîëå-
âàíèÿ â ñâÿçè ñ óâåëè÷åíèåì ÷èñëåííîñòè íà-
ÓÄÊ: 616.711-007.234-07
ÎÑÒÅÎÏÎÐÎÇ Â ÏÐÀÊÒÈÊÅ ÍÅÂÐÎÏÀÒÎËÎÃÀÎÑÒÅÎÏÎÐÎÇ Â ÏÐÀÊÒÈÊÅ ÍÅÂÐÎÏÀÒÎËÎÃÀÎÑÒÅÎÏÎÐÎÇ Â ÏÐÀÊÒÈÊÅ ÍÅÂÐÎÏÀÒÎËÎÃÀÎÑÒÅÎÏÎÐÎÇ Â ÏÐÀÊÒÈÊÅ ÍÅÂÐÎÏÀÒÎËÎÃÀÎÑÒÅÎÏÎÐÎÇ Â ÏÐÀÊÒÈÊÅ ÍÅÂÐÎÏÀÒÎËÎÃÀ
Ëóöêèé È.Ñ. Ëóöêèé È.Ñ. Ëóöêèé È.Ñ. Ëóöêèé È.Ñ. Ëóöêèé È.Ñ. 1,21,21,21,21,2, Ëóöêàÿ Å.È. , Ëóöêàÿ Å.È. , Ëóöêàÿ Å.È. , Ëóöêàÿ Å.È. , Ëóöêàÿ Å.È. 11111, Öûöåâè÷ Ä.Þ. , Öûöåâè÷ Ä.Þ. , Öûöåâè÷ Ä.Þ. , Öûöåâè÷ Ä.Þ. , Öûöåâè÷ Ä.Þ. 11111, Êîëîìèé÷åíêî Å.Á. , Êîëîìèé÷åíêî Å.Á. , Êîëîìèé÷åíêî Å.Á. , Êîëîìèé÷åíêî Å.Á. , Êîëîìèé÷åíêî Å.Á. 11111
Äîðîæíàÿ êëèíè÷åñêàÿ áîëüíèöà íà ñòàíöèè Äîíåöê1,
Äîíåöêèé ãîñóäàðñòâåííûé ìåäèöèíñêèé óíèâåðñèòåò2
|