High oxygen load causes damage to lens epithelium which is reduced by antioxidants

Цель: Изучить механизмы воздействия кислорода на хрусталик и возможный защитный эффект цинк-дезферриоксамина (Zn-DFO). Методы: Хрусталики, полученные из глаза быка, хранили на культуре, полученной из тканей данного органа. Хрусталик подвергали воздействию значительной кислородной нагрузки либо в пр...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Актуальні проблеми транспортної медицини
Дата:2005
Автори: Bormusov, E., Schaal, S., Dovrat, A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-хімічний інститут ім. О.В. Богатського НАН України 2005
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/22387
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:High oxygen load causes damage to lens epithelium which is reduced by antioxidants / E. Bormusov, S. Schaal, A. Dovrat // Актуальні проблеми транспортної медицини. — 2005. — № 2. — С. 120-126. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-22387
record_format dspace
spelling Bormusov, E.
Schaal, S.
Dovrat, A.
2011-06-21T22:01:43Z
2011-06-21T22:01:43Z
2005
High oxygen load causes damage to lens epithelium which is reduced by antioxidants / E. Bormusov, S. Schaal, A. Dovrat // Актуальні проблеми транспортної медицини. — 2005. — № 2. — С. 120-126. — Бібліогр.: 13 назв. — англ.
1818-9385
https://nasplib.isofts.kiev.ua/handle/123456789/22387
612.014.464:611-018.7:678.048
Цель: Изучить механизмы воздействия кислорода на хрусталик и возможный защитный эффект цинк-дезферриоксамина (Zn-DFO). Методы: Хрусталики, полученные из глаза быка, хранили на культуре, полученной из тканей данного органа. Хрусталик подвергали воздействию значительной кислородной нагрузки либо в присутствии, либо без комплекса Zn-DFO (20 ЦІМ). Оптические свойства хрусталика оценивали через семь дней от начала выращивания культуры. По завершении периода, хрусталик извлекали и проводили его морфологический и ферментный анализ. Результаты: В хрусталиках, подвергнутых воздействию больших концентраций кислорода, наблюдали уменьшение оптических свойств и изменение активности энзимов эпителия изучаемого органа. При анализе активности энзимов изучали цикл Кребса, течение гликолиза и состояние АТФ пограничных мембран. Добавление Zn-DFO к культуре клеток до начала воздействия кислородом, элиминировало большую часть кислородозависимых повреждений. Выводы: Полученные результаты могут указывать на возможную роль Zn-DFO как защитного агента при возникновении кислород-индуцированных катаракт.
Purpose: To investigate the mechanisms involved in the effects of oxygen on the eye lens and the possible protective effects of Zinc-desferrioxamine (Zn-DFO) using lens organ culture system. Methods: Bovine lenses, kept in an organ culture system, were exposed to high oxygen load in the presence or absence of Zn-DFO complex (20 MM). Lens optical quality was assessed throughout the 7 days of the culture period. At the end of the culture, lenses were taken for morphological and enzyme analysis. Results: Decreased lenticular optical quality and changes in lens epithelium enzymatic activities were observed in lenses exposed to high oxygen concentration. The enzymes analyzed were from Krebs cycle, glycolysis pathway and membrane bound ATPase. Addition of Zn-DFO to the culture before the exposure to oxygen eliminated most of the oxygen-induced damage. 126) Conclusions: The present results may indicate a possible role of Zn-DFO as a protective agent against oxygen-induced cataract formation.
en
Фізико-хімічний інститут ім. О.В. Богатського НАН України
Актуальні проблеми транспортної медицини
Клиническая медицина
High oxygen load causes damage to lens epithelium which is reduced by antioxidants
Значительные кислородные нагрузки вызывают повреждения эпителия хрусталика, которые устраняются антиоксидантами
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title High oxygen load causes damage to lens epithelium which is reduced by antioxidants
spellingShingle High oxygen load causes damage to lens epithelium which is reduced by antioxidants
Bormusov, E.
Schaal, S.
Dovrat, A.
Клиническая медицина
title_short High oxygen load causes damage to lens epithelium which is reduced by antioxidants
title_full High oxygen load causes damage to lens epithelium which is reduced by antioxidants
title_fullStr High oxygen load causes damage to lens epithelium which is reduced by antioxidants
title_full_unstemmed High oxygen load causes damage to lens epithelium which is reduced by antioxidants
title_sort high oxygen load causes damage to lens epithelium which is reduced by antioxidants
author Bormusov, E.
Schaal, S.
Dovrat, A.
author_facet Bormusov, E.
Schaal, S.
Dovrat, A.
topic Клиническая медицина
topic_facet Клиническая медицина
publishDate 2005
language English
container_title Актуальні проблеми транспортної медицини
publisher Фізико-хімічний інститут ім. О.В. Богатського НАН України
format Article
title_alt Значительные кислородные нагрузки вызывают повреждения эпителия хрусталика, которые устраняются антиоксидантами
description Цель: Изучить механизмы воздействия кислорода на хрусталик и возможный защитный эффект цинк-дезферриоксамина (Zn-DFO). Методы: Хрусталики, полученные из глаза быка, хранили на культуре, полученной из тканей данного органа. Хрусталик подвергали воздействию значительной кислородной нагрузки либо в присутствии, либо без комплекса Zn-DFO (20 ЦІМ). Оптические свойства хрусталика оценивали через семь дней от начала выращивания культуры. По завершении периода, хрусталик извлекали и проводили его морфологический и ферментный анализ. Результаты: В хрусталиках, подвергнутых воздействию больших концентраций кислорода, наблюдали уменьшение оптических свойств и изменение активности энзимов эпителия изучаемого органа. При анализе активности энзимов изучали цикл Кребса, течение гликолиза и состояние АТФ пограничных мембран. Добавление Zn-DFO к культуре клеток до начала воздействия кислородом, элиминировало большую часть кислородозависимых повреждений. Выводы: Полученные результаты могут указывать на возможную роль Zn-DFO как защитного агента при возникновении кислород-индуцированных катаракт. Purpose: To investigate the mechanisms involved in the effects of oxygen on the eye lens and the possible protective effects of Zinc-desferrioxamine (Zn-DFO) using lens organ culture system. Methods: Bovine lenses, kept in an organ culture system, were exposed to high oxygen load in the presence or absence of Zn-DFO complex (20 MM). Lens optical quality was assessed throughout the 7 days of the culture period. At the end of the culture, lenses were taken for morphological and enzyme analysis. Results: Decreased lenticular optical quality and changes in lens epithelium enzymatic activities were observed in lenses exposed to high oxygen concentration. The enzymes analyzed were from Krebs cycle, glycolysis pathway and membrane bound ATPase. Addition of Zn-DFO to the culture before the exposure to oxygen eliminated most of the oxygen-induced damage. 126) Conclusions: The present results may indicate a possible role of Zn-DFO as a protective agent against oxygen-induced cataract formation.
issn 1818-9385
url https://nasplib.isofts.kiev.ua/handle/123456789/22387
citation_txt High oxygen load causes damage to lens epithelium which is reduced by antioxidants / E. Bormusov, S. Schaal, A. Dovrat // Актуальні проблеми транспортної медицини. — 2005. — № 2. — С. 120-126. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT bormusove highoxygenloadcausesdamagetolensepitheliumwhichisreducedbyantioxidants
AT schaals highoxygenloadcausesdamagetolensepitheliumwhichisreducedbyantioxidants
AT dovrata highoxygenloadcausesdamagetolensepitheliumwhichisreducedbyantioxidants
AT bormusove značitelʹnyekislorodnyenagruzkivyzyvaûtpovreždeniâépiteliâhrustalikakotoryeustranâûtsâantioksidantami
AT schaals značitelʹnyekislorodnyenagruzkivyzyvaûtpovreždeniâépiteliâhrustalikakotoryeustranâûtsâantioksidantami
AT dovrata značitelʹnyekislorodnyenagruzkivyzyvaûtpovreždeniâépiteliâhrustalikakotoryeustranâûtsâantioksidantami
first_indexed 2025-11-25T22:16:31Z
last_indexed 2025-11-25T22:16:31Z
_version_ 1850561794268987392
fulltext ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã. 120 ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005 âàííÿ õðîí³÷íîãî àáàêòåð³ïëüíîãî ïðîñòàòè- òó ç ñóïóòí³ì îñåîõîíäðîçîì ïîïåðåêîâî-êðè- æîâîãî â³ää³ëó õðåáòà ç âèêîðèñòàííÿì ñó÷àñ- íèõ ìåòîä³â ô³ç³îòåðàﳿ: ìàãí³òîëàçåðíî¿, õðîìîìàãí³òíî¿, ÌÕÒ – ðåôëåêñîòåðàﳿ, ïíåâ- ìîâ³áðîìàñàæó ïåðåäì³õóðîâî¿ çîëîçè, ôàð- ìàêîàêóïóíêòóðè Sol.Traumel – S. Íàâåäåíî ðåçóëüòàòè êë³í³÷íîãî äîñë³äæåííÿ òà ïî- ð³âíÿëüíî õàðàêòåðèñòèêó çàñòîñóâàííÿ öèõ ìåòîä³â â ïîð³âíÿíí³ ç òðàäèö³éíîþ ô³ç³îòåðà- ﳺþ: ä³àäèíàì³÷í³ òîêè, ñ³íóñî³äàëüíî – ìîäó- ëüîâàí³ òîêè, óëüòðàçâóêîâà òåðàï³ÿ; äîâåäå- íà á³ëüø âèñîêà êë³í³÷íà åôåêòèâí³ñòü ñóì³ñ- íîãî âèêîðèñòàííÿ ìåòîä³â ñó÷àñíî¿ ô³ç³îòå- ðàﳿ. IntroductionIntroductionIntroductionIntroductionIntroduction An adult lens contains two morphological- ly distinct compartments, the epithelium and the fiber-cell mass. The fiber-cell mass provides the lens with its functional phenotype and transpar- ency. Metabolically, the epithelium is the more active compartment of the ocular lens. This sin- gle layer of cells, in addition to acting as a meta- bolic engine that sustains the physiological health of this tissue, also works as a source of stem cells, providing precursor cells, which through molecular and morphological differentiation give rise to fiber cells. Morphological simplicity, de- fined developmental history and easy access to the researcher make this epithelium a material for investigation of universal questions of cell growth, development, epithelial function, cancer and aging. There are two important aspects of the lens epithelium that make it highly relevant to the modern biologist. Firstly, there are no known clinically recognizable cancers of the ocular lens. The lack of vascular system may explain the ab- sence of tumors in this tissue, but this provides only a teleological basis to a very important ques- tion for which the answers must reside in the molecular and physiology of the lens epithelial cells. Secondly, lens epithelium as a morpholog- ical entity in the human lens is first recognizable in the 5th-6th week of gestation. It stays in this morphological state as the anterior epithelium of the lens for the rest of life, making it an attractive tissue for the study of the effects of aging on ep- ithelial function (1). Studies on human patients and experimen- tal animals indicate that hyperbaric O 2 can dam- age the lens nucleus and the lens epithelium in vivo. When the cells were exposed to 50 atm O 2 (99% O 2 + 1% CO 2 ) for 3 hr, there were no imme- diate effects on lens morphology, viability and transport processes (uptake of 86Rb and 14C-al- pha AIB). In addition, the O 2 treatment did not lower the high level of reduced glutathione or in- crease the low level of oxidized glutathione. How- ever, 50 atm O 2 did produce a near doubling in the glycolytic rate which maintained ATP at lev- els only slightly lower than normal (2). In previ- ous studies we found that high oxygen load has a toxic effect on bovine lenses in organ culture. Changes marking toxicity follow the route of ox- ygen diffusion into the lens, from the periphery to the center (3). The current study investigated the mechanisms of hyperbaric oxygen on lens epithelial enzymes and the effects of the antioxi- dant Zinc-desferrioxamine (Zn-DFO) using a lens organ culture system. MethodsMethodsMethodsMethodsMethods Experimental treatments Intact bovine lenses (one year old) in or- gan culture conditions were included in the present study. We divide the lenses into3 groups: (1) Hyperbaric oxygen (HBO) exposureHyperbaric oxygen (HBO) exposureHyperbaric oxygen (HBO) exposureHyperbaric oxygen (HBO) exposureHyperbaric oxygen (HBO) exposure groupgroupgroupgroupgroup: 25 lenses exposed daily to HBO for 4 days. Each exposure session consisted of 120 minutes 100% oxygen in a pressure chamber at 2.5 ATA. During the exposure lenses were kept in PBS. (2) HBO exposure group with Zn-DFO:HBO exposure group with Zn-DFO:HBO exposure group with Zn-DFO:HBO exposure group with Zn-DFO:HBO exposure group with Zn-DFO: 25 lenses exposed daily to HBO for 4 days. Each exposure included 120 minutes of 100% oxygen in a pressure chamber at 2.5 ATA. During HBO exposure lenses were kept in a Zn-DFO 2.5 mg/ liter in PBS. (3). Control group.Control group.Control group.Control group.Control group. 50 lenses incubated daily for 4 days in PBS for 120 min. Organ Culture System Each lens was placed in a glass and silicon rubber chamber containing 24ml of culture me- dium (M 199) with Earl’s balanced salt solution, supplemented with 5.96g/L HEPES, 3% dialyzed fetal calf serum and antibiotics (penicillin 100 U/ ml and streptomycin 0.1 mg/ml). Lenses were completely immersed in culture medium both ÓÄÊ 612.014.464:611-018.7:678.048 HIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICHHIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICHHIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICHHIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICHHIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICH IS REDUCED BY ANTIOXIDANTSIS REDUCED BY ANTIOXIDANTSIS REDUCED BY ANTIOXIDANTSIS REDUCED BY ANTIOXIDANTSIS REDUCED BY ANTIOXIDANTS Elvira Bormusov, Shlomit Schaal and Ahuva DovratElvira Bormusov, Shlomit Schaal and Ahuva DovratElvira Bormusov, Shlomit Schaal and Ahuva DovratElvira Bormusov, Shlomit Schaal and Ahuva DovratElvira Bormusov, Shlomit Schaal and Ahuva Dovrat Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel This study was supported in part by the Guzik Ophthalmology Research Fund ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005 ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã. 121 below and above. The medium was changed dai- ly. The lenses were incubated at 35°C. Experi- mental treatments started after pre-incubation of 24 hours. Pressure ChamberPressure ChamberPressure ChamberPressure ChamberPressure Chamber Bovine lenses in the specially designed culture chambers were exposed to hyperbaric oxygen in a sealed hyperbaric oxygen pressure chamber. Pressure was raised to 2.5 ATA over 20 minutes. The duration of each exposure was 120 minutes. During the exposures, the temperature inside the chamber remained constant. Oxygen saturation inside the pressure chamber was mon- itored and kept constant throughout the expo- sure session. During the exposure to hyperbaric oxygen the culture medium was changed to PBS for 120 minutes in all study and control lenses. Lenses treated with Zn-DFO were put in PBS containing 2.5mg/liter Zn-DFO. Study lenses were exposed to oxygen at the pressure chamber and control lenses kept at room air during the exposure. Me- dium was changed back to original medium im- mediately after exposure. Lens optical quality monitoring Lens optical quality was monitored daily throughout the 7 days of the culture period. Lens optical measurements were determined by an automated scanning laser system that recorded both relative transmission and focal length across the lens (The Scan-ToxTM In Vitro Assay System, Harvard Apparatus, Holliston, MA). Lens epithelium morphology and enzyme analysis On day 7 of the culture period, lenses were taken for morphological and enzyme analysis. Total flat preparations of the front capsule epi- thelium monolayer of lenses from the different treatments were evaluated. When evaluating the different grade of its differentiation was taken into account, i.e. topographical features of central in- termediate and equatorial zones (fig. 1). We followed the histochemical localizations of the enzymes: succinic dehydrogenase (SDH), lactate dehydrogenase (LDH), glucose-6-phos- phate dehydrogenase (G- 6-PD), hexokinase (HK) and adenosine triphos- phatase (ATPase). For analysis we used the clas- sical methods of Pearse (4). Ouabain (10-4 M), the ATPase inhibitor was used as control samples for AT- Pase activity. Quantitative analysis of the intensity of the reactions at epithelial central and equatorial zones was done by Image-Pro Plus program, Version 4.0 for Windows, by measuring optical density in each cell, following by mathematical processing in Microsoft Excel. A change was de- fined as significant if the difference between con- trol and treated groups reached value of P < 0.05. ResultsResultsResultsResultsResults Figures 2a and 2b demonstrate the activi- ties of G6PD at the center and equators of the lens epithelium of control lenses, HBO treated lenses and lenses treated with HBO and Zn-DFO. There is not much difference of G6PD ac- tivities at the center of the lens epithelium for the different treatments however at the equators af- ter exposure to HBO, G6PD activity increased by almost 10% and in the presence of Zn-DFO the activity increased by 25%. (Fig. 2b). Cells were well stained and diformazan grains were situated on the whole area of the cy- toplasm (Fig. 2a). The area of the cells exposed to HBO did not change much but was increased in the presence of the antioxidant Zn-DFO. The changes in cells area were higher at the equa- tors of the lens epithelium (Fig. 2c). The diformazan grains in the cells after HBO treatment did not show much contrast com- pared to controls and lenses treated with anti- oxidant. SDH activity is demonstrated in Fig 3a. Di- formazan location in the cells demonstrated by blue product formed after recovering of the ditetrazolium salts (fig. 3a). Treatment by HBO decreased SDH activi- ties in central zone of lens epithelium by 17.9% and in equatorial zone by 21.5%. In lenses treat- ed with HBO in the presence of the antioxidant, SDH activities were similar to the activities of the control group (fig. 3b). The activity of LDH is demonstrated in Fig- ure 4a. Activity of LDH (enzyme with high substrate Fig. 1. The eye lens. ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã. 122 ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005 Control HBO HBO + Zn-DFO A B Fig. 2a. G6PD activities of control lenses, HBO treated lenses and HBO+Zn DFO treated lenses: (A) Center of lens epithelium (B) Equators of lens epithelium. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 Center Equator In te gr at io n O f O pt ic al D en si ty Control HBO HBO+ZnDFO G6PD Day 7 Fig. 2b. G6PD activities of lens epithelial cells in control lenses and lenses in- cubated with HBO and HBO with Zn-DFO. 0 20 40 60 80 100 120 Center Equator A re a O f Le ns E pi th el iu m C el ls Control HBO HBO+Zn-DFO Fig. 2c.-Changes in epithelial cells area, after HBO treatment and after treat- ment with HBO in the presence of the antioxidant (Zn-DFO) – G6PD activity. specificity), is reduced by HBO treatment and also by HBO treatment in the pres- ence of the antioxidant. Ac- tivity of LDH was decreased markedly (32.7%) in equato- rial zone after treating with HBO and antioxidant (Fig. 4b). Distinctly expressed changes of hexokinase activ- ities were found in the epithe- lial monolayer after HBO treatment (Fig.5b). Hexokinase activities increased almost twice in both center and equators. The localization of hexoki- nase in the cells is demon- strated in Fig.5a. Hexokinase is displaced to the peripher- ies of the cells. The size of the cells (Fig 5c), show increased area after HBO treatment. The observable rein- forcement of the ATPase ac- tivities after HBO and HBO+ Zn-DFO treatments was ex- pressed by increased quan- tity of the black deposits in the cells (Fig.6), in compari- son to control group. DiscussionDiscussionDiscussionDiscussionDiscussion In our studies lenses in organ culture conditions were subjected to high oxy- gen load and in some exper- iments the antioxidant Zn- DFO was added to the oxy- gen treated lenses for check- ing the possible ability to pro- tect the lenses from oxygen damage. We demonstrated that the lens epithelium re- acted differently with differ- ent enzymesal: also Zn-DFO presence during oxygen ex- posure did not always pre- vent the oxygen changes. All enzyme activities were analyzed in lens epithe- lium after 7 days in culture. Hexokinase activities in- creased as a result of HBO treatment. Increased hexoki- nase activity means in- creased glucose phosphor- ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005 ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã. 123 ylation. Also G6PD showed in- crease in activity which demon- strate activation of hexose mono- phosphate shunt. In the study of Marsili et al (5) it was found that the oxidative dam- age may be the part of the re- sponse to elevated levels of the glucose. Giblin et al.(6) exposed lenses to 50 atm of O 2 and pro- duced a three-fold stimulation of hexose mono-phosphate shunt activity, equal to that which has been reported for treatment of lenses with 0.06 mM H 2 O 2 . The studies of Cappiello et al.fe: (7) by chromatography meth- od on Matrex Orange resin allowed the separation of glutathione mod- ified and native aldose reductase in crude extracts of bovine lens. The analysis of hyperbaric oxygen treated lenses revealed the forma- tion in the intact cultured lens of an enzyme form displaying affinity column binding properties, specif- ic activity, sensitivity to inhibition and susceptibility to activation by thiol reducing agents, all compa- rable to glutathione modified al- dose-reductase. The extent of the enzyme modification increased with the time of the oxidative treat- ment and was maximal in the lens nucleus. Recent studies of Giblin (8) have indicated an important hy- droxyl radical-scavenging function for GSH in lens epithelial cells, in- dependent of the cells’ ability to detoxify H 2 O 2 . Depletion of GSH or inhibition of the redox cycle allows low levels of oxidant to damage lens epithelial targets such as Na/ K-ATPase, certain cytoskeletal proteins and proteins associated with normal membrane permeabil- ity. The level of GSH in the nucleus of the lens is relatively low, partic- ularly in the aging lens. Combined with low activity of the glutathione redox cycle in this region, makes the nucleus especially vulnerable to oxidative stress, as has been demonstrated with use of in vivo experimental animal models such as hyperbaric oxygen, UVA light Control HBO HBO + Zn-DFO Fig. 3a. SDH activities in cells of lens epithelium equator zone at three different treatments: Control, HBO exposed lenses and HBO treated lenses in the presence of Zn-DFO. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Center Equator In te gr at io n O f O pt ic al D en si ty Control HBO HBO+Zn-DFO Fig. 3b. Integration of optical density of SDH activities in lens epithelial cells under influence of the HBO and the antioxidant ( Zn-DFO).. Control HBO HBO + Zn-DFO Fig. 4a. LDH activities in the equatorial zone of lens epithelium cells 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 Center Equator In te gr at io n O f O pt ic al D en si ty Control HBO HBO+A LDH Day 7 Fig. 4b. Integration of optical density of LDH activities in the cells of lens epithelium under influence of the HBO and HBO+Zn-DFO. ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã. 124 ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005 and the glutathione peroxidase knockout mouse. Effects observed in these models, which are current- ly being utilized to investigate the mechanism of formation of human senile nuclear cataract, include an increase in lens nuclear disulfide, damage to nuclear membranes and an increase in nuclear light scattering. A need exists for devel- opment of therapeutic agents to slow age-related loss of antioxi- dant activity in the nucleus of the human lens to delay the onset of cataract. Azzam et al. (9) investigated morphological changes in the eye lens caused by UV-A. Analysis by scanning electron microscopy found irregularity of fiber morphol- ogy in lenses exposed to UV-A ir- radiation (but not in control lens- es). They concluded that UV-A caused damage to cell mem- branes of the lens and alterations in lens optics, which may subse- quently lead to senile cataract for- mation. Lens NaK-ATPase activity can recover from damage caused by UV-A at 365 nm. When the lens- es received irradiation of 33 J/cm2, NaK-ATPase activity recovered from the damage during the culture period only at the center and not at the equators of the epithelium (10). HBO enhanced metabolic activity of lens epithelial cells that accompanied with changes of the cells size. The same fact is known from the work of Slaaf et al. (11). They detected the relative number of capillaries. Occlusion is unity at low local oxygen, and diminishes with increasing local oxygen to be- come 0 at an oxygen tension of about 70 mm Hg. Three doses of daily x-ray ir- radiation caused 1 week later, mild changes in the lens such as une- ven height of epithelial cells, irreg- ular bow structures, and swelling of cortical fibers were observed. Eight weeks later, irregular bow config- uration, posterior dislocation of nuclei, severe epithelial loss and marked swelling of cortical fibers Control HBO A B Fig. 5a. Activities of hexokinase at the center (A) and equa- tors (B) of lens epithelial cells of control and HBO treated lenses. 0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 Center EquatorIn te gr at io n O f O pt ic al D en si ty Control HBO Hexokinase Day 7 Fig. 5b. Integration of optical density of hexokinase activity in lens epithelium of control and HBO treated lenses. 0 2000 4000 6000 8000 10000 12000 Center Equator A re a C el ls E pi th el iu m L en s Control HBO Hexokinase Day 7 Fig. 5c. Cells area analysis in lens epithelium of control and HBO treated lenses (Hexokinase activity) ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005 ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã. 125 were observed at the equatorial area. Epithelial loss and deformed nuclei of the epithelium were observed in the central area (Morita et al.12). Struck et al (13) studied hematoxylin-eosin stained anterior central lens capsules with at- tached lens epithelial cells by light microscopy for cell parameters such as cell density (mor- phometry), nucleus area (A0), nucleus volume (V), cell area (A) and nucleus-plasma-ratio. The mean cell density in type-II diabetics (group I) is 3691 +/- 346 cells/mm2 and in non-diabetics (group II) 4162 +/- 504 cells/mm2, respectively (p = 0.001). The total female mean cell density (4036 +/- 525 cells/mm2) was not significantly higher than the male (3788 +/- 412 cells/mm2). A decrease of the mean cell density could be at- tributed to age only in the non-diabetic group. With regard to the type of cataract the posterior sub-capsular cataract shows the lowest mean cell density (3620 +/- 333 cells/mm2) and the nuclear cataract (4250 +/- 513 cells/mm2) the highest, respectively. The medium nucleus area and -volume and cell area are in the type-II dia- betic group significantly larger than in non-dia- betics. The results of our observations, demon- strated positive effects of Zn-DFO during HBO treatment. This factor under the right conditions can serve as an effective protector for reactiva- tion and normalization of the different functions of the visual organ. It is knowledge that the change of glycolysis pathway directed to reduc- tion of the “effect of Paster” that is caused of ox- ygen insufficiency of cells. May be possible that in smaller dose and inten- sities HBO treatment, can be used in combination with Zn-DFO as conductor of the drug to the eye with different pathology , which are accompanied the breaches oxidation-re- conditioning process. ReferencesReferencesReferencesReferencesReferences 1.1.1.1.1. Padgaonkar V, Giblin FJ, Reddan JR, Dziedzic DC. Hyperbaric oxygen in- hibits the growth of cul- tured rabbit lens epithelial cells without affecting glu- tathione level. Exp Eye Res. 1993 Apr;56(4):443- 52 2.2.2.2.2. Schaal S, Beiran I, Rubinstein I, Miller B, Dovrat A. Lenticular oxy- gen toxicity. Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3476-84. 3.3.3.3.3. A.G. Everson Pearse. Histochemistry. Theo- retical and Applied.3 editon. Ediburgh ahd London, 1972 4.4.4.4.4. Bhat SP. The ocular lens epitheli um. Biosci Rep. 2001 Aug;21(4):537-63 5.5.5.5.5. Marsili S, Salganik RI, Albright CD, Freel CD, Johnsen S, Peiffer RL, Costello MJ. Cataract formation in a strain of rats selected for high oxidative stress. Exp Eye Res. 2004 Nov;79(5):595-612. 6.6.6.6.6. Giblin FJ, Schrimscher L, Chakrapani B, Red- dy VN. Exposure of rabbit lens to hyperbaric oxygen in vitro: regional effects on GSH level. Invest Ophthalmol Vis Sci. 1988 Aug;29(8):1312-9. 7.7.7.7.7. Cappiello M, Vilardo PG, Cecconi I, Leverenz V, Giblin FJ, Del Corso A, Mura U. Occurrence of glutathione-modified aldose reductase in oxidatively stressed bovine lens. Biochem Bi- ophys Res Commun. 1995 Feb 15;207(2):775-82. 8.8.8.8.8. Giblin FJ. Glutathione: a vital lens antioxidant. J Ocul Pharmacol Ther. 2000 Apr;16(2):121- 35. 9.9.9.9.9. Azzam N, Levanon D, Dovrat A Effects of UV- A irradiation on lens morphology and optics. Exp Gerontol. 2004 Jan;39(1):139-46. 10.10.10.10.10. Dovrat A, Weinreb O. Effects of UV-A radi- ation on lens epithelial NaK-ATPase in organ culture. Invest Ophthalmol Vis Sci. 1999 Jun;40(7):1616-20. 11.11.11.11.11. Slaaf DW, Bosman J, Tangelder GJ, oude Control HBO HBO + Zn-DFO A B Fig. 6. Na-K-ATPase activities at the center (A) and equators (B) of lens epithelial cells exposed to three treatments: control, HBO expo- sure and exposure to HBO in the presence of the antioxidant ZN-DFO (15x40). ATPase (Day 7) ÀÊÒÓÀËÜÍÛÅ ÏÐÎÁËÅÌÛ ÒÐÀÍÑÏÎÐÒÍÎÉ ÌÅÄÈÖÈÍÛ ¹ 2, 2005 ã. 126 ACTUAL PROBLEMS OF TRANSPORT MEDICINE # 2, 2005 Egbrink MG, Reneman RS. Oxygen- and pres- sure-dependent functional capillary density in rabbit tenuissimus muscle. Int J Microcirc Clin Exp. 1995 Sep-Oct;15(5):271-5 12.12.12.12.12. Morita T, Hirayama S, Uga S, Shimizu K, Wakasugi A, Nakayama S. The effect of con- tinuous low doses of X-ray irradiation on the rat lens. Jpn J Ophthalmol. 2003 Sep- Oct;47(5):427-36. 13.13.13.13.13. Struck HG, Heider C, Lautenschlager C [Changes in the lens epithelium of diabetic and non-diabetic patients with various forms of opacities in senile cataract] Klin Monatsbl Augenheilkd. 2000 Apr;216(4):204-9. SummarySummarySummarySummarySummary HIGH OXYGEN LOAD CAUSES DAMAGE TO LENS EPITHELIUM WHICH IS REDUCED BY ANTIOXIDANTS Elvira Bormusov, Shlomit Schaal and Ahuva Dovrat Purpose: Purpose: Purpose: Purpose: Purpose: To investigate the mechanisms involved in the effects of oxygen on the eye lens and the possible protective effects of Zinc-des- ferrioxamine (Zn-DFO) using lens organ culture system. Methods:Methods:Methods:Methods:Methods: Bovine lenses, kept in an organ culture system, were exposed to high oxygen load in the presence or absence of Zn-DFO com- plex (20 µM). Lens optical quality was assessed throughout the 7 days of the culture period. At the end of the culture, lenses were taken for mor- phological and enzyme analysis. Results: Results: Results: Results: Results: Decreased lenticular optical qual- ity and changes in lens epithelium enzymatic ac- tivities were observed in lenses exposed to high oxygen concentration. The enzymes analyzed were from Krebs cycle, glycolysis pathway and membrane bound ATPase. Addition of Zn-DFO to the culture before the exposure to oxygen elim- inated most of the oxygen-induced damage. Conclusions: Conclusions: Conclusions: Conclusions: Conclusions: The present results may in- dicate a possible role of Zn-DFO as a protective agent against oxygen-induced cataract forma- tion. ÐåôåðàòÐåôåðàòÐåôåðàòÐåôåðàòÐåôåðàò ÇÍÀ×ÈÒÅËÜÍÛÅ ÊÈÑËÎÐÎÄÍÛÅ ÍÀÃÐÓÇÊÈ ÂÛÇÛÂÀÞÒ ÏÎÂÐÅÆÄÅÍÈß ÝÏÈÒÅËÈß ÕÐÓÑÒÀËÈÊÀ, ÊÎÒÎÐÛÅ ÓÑÒÐÀÍßÞÒÑß ÀÍÒÈÎÊÑÈÄÀÍÒÀÌÈ Ýëüâèðà Áîðìóñîâà, Øëîìèò Øààëü, Àõóâà Äîâðàò Öåëü: Èçó÷èòü ìåõàíèçìû âîçäåéñòâèÿ êèñëîðîäà íà õðóñòàëèê è âîçìîæíûé çàùèòíûé ýôôåêò öèíê-äåçôåððèîêñàìèíà (Zn-DFO). Ìåòîäû: Õðóñòàëèêè, ïîëó÷åííûå èç ãëàçà áûêà, õðàíèëè íà êóëüòóðå, ïîëó÷åííîé èç òêàíåé äàííîãî îðãàíà. Õðóñòàëèê ïîäâåðãàëè âîçäåéñòâèþ çíà÷èòåëüíîé êèñëîðîäíîé íàãðóçêè ëèáî â ïðèñóòñòâèè, ëèáî áåç êîìïëåêñà Zn-DFO (20 µM). Îïòè÷åñêèå ñâîéñòâà õðóñòàëèêà îöåíèâàëè ÷åðåç ñåìü äíåé îò íà÷àëà âûðàùèâàíèÿ êóëüòóðû. Ïî çàâåðøåíèè ïåðèîäà, õðóñòàëèê èçâëåêàëè è ïðîâîäèëè åãî ìîðôîëîãè÷åñêèé è ôåðìåíòíûé àíàëèç. Ðåçóëüòàòû:  õðóñòàëèêàõ, ïîäâåðãíóòûõ âîçäåéñòâèþ áîëüøèõ êîíöåíòðàöèé êèñëîðîäà, íàáëþäàëè óìåíüøåíèå îïòè÷åñêèõ ñâîéñòâ è èçìåíåíèå àêòèâíîñòè ýíçèìîâ ýïèòåëèÿ èçó÷àåìîãî îðãàíà. Ïðè àíàëèçå àêòèâíîñòè ýíçèìîâ èçó÷àëè öèêë Êðåáñà, òå÷åíèå ãëèêîëèçà è ñîñòîÿíèå ÀÒÔ ïîãðàíè÷íûõ ìåìáðàí. Äîáàâëåíèå Zn-DFO ê êóëüòóðå êëåòîê äî íà÷àëà âîçäåéñòâèÿ êèñëîðîäîì, ýëèìèíèðîâàëî áîëüøóþ ÷àñòü êèñëîðîä- çàâèñèìûõ ïîâðåæäåíèé. Âûâîäû: Ïîëó÷åííûå ðåçóëüòàòû ìîãóò óêàçûâàòü íà âîçìîæíóþ ðîëü Zn-DFO êàê çàùèòíîãî àãåíòà ïðè âîçíèêíîâåíèè êèñëîðîä-èíäóöèðîâàííûõ êàòàðàêò. Îñòåîïîðîç ìåòàáîëè÷åñêîå çàáîëåâà- íèå ñêåëåòà, ñîïðîâîæäàþùååñÿ ñíèæåíèåì ìèíåðàëüíîé ïëîòíîñòè êîñòíîé òêàíè (ÌÏÊÒ), ïðåâîñõîäÿùåå âîçðàñòíóþ è ïîëî- âóþ íîðìû, ïðèâîäÿùåå ê âîçíèêíîâåíèþ ïåðåëîìîâ ðàçëè÷íûõ îòäåëîâ ñêåëåòà, â òîì ÷èñëå ïîçâîíêîâ, óõóäøåíèþ êà÷åñòâà æèçíè ëþäåé, çíà÷èòåëüíûì ìàòåðèàëüíûì çàòðà- òàì íà ëå÷åíèå è ðåàáèëèòàöèþ [1,2,5,6,9]. Â ÑØÀ åæåãîäíî óâåëè÷èâàþòñÿ çàòðàòû íà ëå- ÷åíèå è ðåàáèëèòàöèþ áîëüíûõ, ñâÿçàííûå ñ ïåðåëîìàìè âñëåäñòâèå îñòåîïîðîçà. Òàê, â òå÷åíèå 5 ëåò ýòà ñóììó âîçðîñëà ñ 10 äî 13,8 ìëð äîëëàðîâ â ãîä [4,10]. Ïî ïðåäâàðèòåëü- íûì äàííûì îñòåîïîðîç âñòðå÷àåòñÿ ó 11- 12% íàñåëåíèÿ Åâðîïåéñêèõ ñòðàí. Ñóùå- ñòâóåò òåíäåíöèÿ ê ðàñïðîñòðàíåíèþ çàáîëå- âàíèÿ â ñâÿçè ñ óâåëè÷åíèåì ÷èñëåííîñòè íà- ÓÄÊ: 616.711-007.234-07 ÎÑÒÅÎÏÎÐÎÇ Â ÏÐÀÊÒÈÊÅ ÍÅÂÐÎÏÀÒÎËÎÃÀÎÑÒÅÎÏÎÐÎÇ Â ÏÐÀÊÒÈÊÅ ÍÅÂÐÎÏÀÒÎËÎÃÀÎÑÒÅÎÏÎÐÎÇ Â ÏÐÀÊÒÈÊÅ ÍÅÂÐÎÏÀÒÎËÎÃÀÎÑÒÅÎÏÎÐÎÇ Â ÏÐÀÊÒÈÊÅ ÍÅÂÐÎÏÀÒÎËÎÃÀÎÑÒÅÎÏÎÐÎÇ Â ÏÐÀÊÒÈÊÅ ÍÅÂÐÎÏÀÒÎËÎÃÀ Ëóöêèé È.Ñ. Ëóöêèé È.Ñ. Ëóöêèé È.Ñ. Ëóöêèé È.Ñ. Ëóöêèé È.Ñ. 1,21,21,21,21,2, Ëóöêàÿ Å.È. , Ëóöêàÿ Å.È. , Ëóöêàÿ Å.È. , Ëóöêàÿ Å.È. , Ëóöêàÿ Å.È. 11111, Öûöåâè÷ Ä.Þ. , Öûöåâè÷ Ä.Þ. , Öûöåâè÷ Ä.Þ. , Öûöåâè÷ Ä.Þ. , Öûöåâè÷ Ä.Þ. 11111, Êîëîìèé÷åíêî Å.Á. , Êîëîìèé÷åíêî Å.Á. , Êîëîìèé÷åíêî Å.Á. , Êîëîìèé÷åíêî Å.Á. , Êîëîìèé÷åíêî Å.Á. 11111 Äîðîæíàÿ êëèíè÷åñêàÿ áîëüíèöà íà ñòàíöèè Äîíåöê1, Äîíåöêèé ãîñóäàðñòâåííûé ìåäèöèíñêèé óíèâåðñèòåò2