Theory of integral acoustoelasticity for 3-D stress-strained state
Starting with the model of small elastic disturbance in a non-uniformly strained body and taking into account the weakness of the body’s acoustical inhomogeneity and anisotropy induced by strain, a theory for integral acoustoelasticity has been developed in the paper. The theory establishes mathemat...
Gespeichert in:
| Veröffentlicht in: | Фізико-математичне моделювання та інформаційні технології |
|---|---|
| Datum: | 2010 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
2010
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/22469 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Theory of integral acoustoelasticity for 3-D stress-strained state / V. Chekurin // Фіз.-мат. моделювання та інформ. технології. — 2010. — Вип. 12. — С. 179-188. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-22469 |
|---|---|
| record_format |
dspace |
| spelling |
Chekurin, V. 2011-06-22T20:57:33Z 2011-06-22T20:57:33Z 2010 Theory of integral acoustoelasticity for 3-D stress-strained state / V. Chekurin // Фіз.-мат. моделювання та інформ. технології. — 2010. — Вип. 12. — С. 179-188. — Бібліогр.: 7 назв. — англ. 1816-1545 https://nasplib.isofts.kiev.ua/handle/123456789/22469 539.3 Starting with the model of small elastic disturbance in a non-uniformly strained body and taking into account the weakness of the body’s acoustical inhomogeneity and anisotropy induced by strain, a theory for integral acoustoelasticity has been developed in the paper. The theory establishes mathematical models for interaction of narrow longitudinally and transversally polarized ultrasonic beams with 3-D strain field in the body. Ray integrals of acoustoelasticity have been established with the use of the model. These relationships connect measured phase parameters of longitudinally and transversally polarized ultrasonic beams, crossing the body in any direction, with integrals of initial strain distribution along this direction. They can be used to formulate problems for tomography of the body’s stress-strained state. Виходячи з моделі малого пружного збурення в неоднорідно деформованому тілі та беручи до уваги слабкість акустичних неоднорідності й анізотропії, індукованих деформацією, розроблено теорію інтегральної акустопружності. Сформульовані моделі взаємодії вузьких поляризованих ультразвукових пучків із тривимірним полем деформації у твердому тілі. У рамках моделей отримані інтегральні співвідношення акустопружності, що пов’язують зміни фаз коливань і стану поляризації поздовжньо та поперечно поляризованих ультразвукових хвиль, які пройшли через деформоване середовище, з інтегралами від розподілів компонент тензора початкової деформації вздовж напрямку поширення хвиль. Їх можна використати для формулювання задач обчислювальної томографії напружено-деформованого стану твердих тіл. Исходя из модели малого упругого возмущения в неоднородно деформированном теле и принимая во внимание, что индуцированные деформацией акустические неоднородность и анизотропия являются слабыми, разработана теория интегральной акустоупругости. Сформулированы математические модели взаимодействия узких поляризованных ультразвуковых пучков с трехмерным полем деформации в твердом теле. В рамках моделей получены лучевые интегралы акустоупругости — соотношения, устанавливающие аналитическую связь между изменениями фаз колебаний и состояния поляризации продольно и поперечно поляризованных волн, прошедших через деформированную среду, с линейными интегралами от распределений компонент начальных деформаций на направлениях распространения волн. Их можно использовать для постановки задач вычислительной томографии напряженно-деформированного состояния твердых тел. en Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України Фізико-математичне моделювання та інформаційні технології Theory of integral acoustoelasticity for 3-D stress-strained state Теорія інтегральної акустопружності для тривимірного напружено-деформованого стану Теория интегральной акустоупругости для трехмерного напряженно-деформированного состояния Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Theory of integral acoustoelasticity for 3-D stress-strained state |
| spellingShingle |
Theory of integral acoustoelasticity for 3-D stress-strained state Chekurin, V. |
| title_short |
Theory of integral acoustoelasticity for 3-D stress-strained state |
| title_full |
Theory of integral acoustoelasticity for 3-D stress-strained state |
| title_fullStr |
Theory of integral acoustoelasticity for 3-D stress-strained state |
| title_full_unstemmed |
Theory of integral acoustoelasticity for 3-D stress-strained state |
| title_sort |
theory of integral acoustoelasticity for 3-d stress-strained state |
| author |
Chekurin, V. |
| author_facet |
Chekurin, V. |
| publishDate |
2010 |
| language |
English |
| container_title |
Фізико-математичне моделювання та інформаційні технології |
| publisher |
Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України |
| format |
Article |
| title_alt |
Теорія інтегральної акустопружності для тривимірного напружено-деформованого стану Теория интегральной акустоупругости для трехмерного напряженно-деформированного состояния |
| description |
Starting with the model of small elastic disturbance in a non-uniformly strained body and taking into account the weakness of the body’s acoustical inhomogeneity and anisotropy induced by strain, a theory for integral acoustoelasticity has been developed in the paper. The theory establishes mathematical models for interaction of narrow longitudinally and transversally polarized ultrasonic beams with 3-D strain field in the body. Ray integrals of acoustoelasticity have been established with the use of the model. These relationships connect measured phase parameters of longitudinally and transversally polarized ultrasonic beams, crossing the body in any direction, with integrals of initial strain distribution along this direction. They can be used to formulate problems for tomography of the body’s stress-strained state.
Виходячи з моделі малого пружного збурення в неоднорідно деформованому тілі та беручи до уваги слабкість акустичних неоднорідності й анізотропії, індукованих деформацією, розроблено теорію інтегральної акустопружності. Сформульовані моделі взаємодії вузьких поляризованих ультразвукових пучків із тривимірним полем деформації у твердому тілі. У рамках моделей отримані інтегральні співвідношення акустопружності, що пов’язують зміни фаз коливань і стану поляризації поздовжньо та поперечно поляризованих ультразвукових хвиль, які пройшли через деформоване середовище, з інтегралами від розподілів компонент тензора початкової деформації вздовж напрямку поширення хвиль. Їх можна використати для формулювання задач обчислювальної томографії напружено-деформованого стану твердих тіл.
Исходя из модели малого упругого возмущения в неоднородно деформированном теле и принимая во внимание, что индуцированные деформацией акустические неоднородность и анизотропия являются слабыми, разработана теория интегральной акустоупругости. Сформулированы математические модели взаимодействия узких поляризованных ультразвуковых пучков с трехмерным полем деформации в твердом теле. В рамках моделей получены лучевые интегралы акустоупругости — соотношения, устанавливающие аналитическую связь между изменениями фаз колебаний и состояния поляризации продольно и поперечно поляризованных волн, прошедших через деформированную среду, с линейными интегралами от распределений компонент начальных деформаций на направлениях распространения волн. Их можно использовать для постановки задач вычислительной томографии напряженно-деформированного состояния твердых тел.
|
| issn |
1816-1545 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/22469 |
| citation_txt |
Theory of integral acoustoelasticity for 3-D stress-strained state / V. Chekurin // Фіз.-мат. моделювання та інформ. технології. — 2010. — Вип. 12. — С. 179-188. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT chekurinv theoryofintegralacoustoelasticityfor3dstressstrainedstate AT chekurinv teoríâíntegralʹnoíakustopružnostídlâtrivimírnogonapruženodeformovanogostanu AT chekurinv teoriâintegralʹnoiakustouprugostidlâtrehmernogonaprâžennodeformirovannogosostoâniâ |
| first_indexed |
2025-11-24T16:27:51Z |
| last_indexed |
2025-11-24T16:27:51Z |
| _version_ |
1850484353964965888 |
| fulltext |
179
Theory of integral acoustoelasticity for 3-D stress-strained state
Vasyl Chekurin
Professor, Doctor of Sciences, PhD, National Academy of Sciences of Ukraine Pidstryhach Institute for Applied
problems of Mechanics and Mathematics, Naukova str. 3b, L’viv, Ukraine, 79060, e-mail: chekurin@iapmm.lviv.ua
Starting with the model of small elastic disturbance in a non-uniformly strained body and taking
into account the weakness of the body’s acoustical inhomogeneity and anisotropy induced by
strain, a theory for integral acoustoelasticity has been developed in the paper. The theory establi-
shes mathematical models for interaction of narrow longitudinally and transversally polarized
ultrasonic beams with 3-D strain field in the body. Ray integrals of acoustoelasticity have been
established with the use of the model. These relationships connect measured phase parameters
of longitudinally and transversally polarized ultrasonic beams, crossing the body in any direction,
with integrals of initial strain distribution along this direction. They can be used to formulate
problems for tomography of the body’s stress-strained state.
Key words: strain field, acoustoelasticity, acoustical tensor field tomography.
Introduction. Acoustoelasticity is a feature of solids to change their acoustical proper-
ties under strain. Physical nature of this effect consists in the dependence of the mass
density and elasticity moduli on strain and in non-additivity of strains of initial state
and a disturbance [1, 2]. In the case of homogeneous initial strained state acoustoelasti-
city relationships were obtained [1-4]. They connect phase velocities of plane waves
with components of initial strain tensor and elasticity moduli of the body.
If the body is non-uniformly strained it becomes acoustically anisotropic and
inhomogeneous. Propagation of small elastic disturbances in such object is described
by a system of hyperbolic type differential equations with variable coefficients [5].
Thereupon problems of wave field analysis in such an objects become much more
complicated. But acoustical anisotropy and inhomogeneity induced by elastic strain are
weak. This makes possible to simplify the mathematical model for interaction
of acoustical waves with non-uniformly strained solids. For instance, in papers [6, 7]
the weakness of acoustical inhomogeneity was used to build an iteration process for
a problem of small pulsed disturbance propagation in non-uniformly strained solid con-
tinuum. This approach enabled us to establish the integral acoustoelasticity relation-
ships. They express time periods for elastic pulses travelling along a given segment
in strained continuum via integrals of initial strain distribution on the segment.
1. Small elastic disturbance in a non-uniformly strained solid
Propagation of small elastic disturbance in non-uniformly strained elastic body is
described in geometrically linear approach by hyperbolic system of equations [5]
УДК 539.3
Vasyl Chekurin
Theory of integral acoustoelasticity for 3-D stress-strained state
180
2
2
i k
ijkl
j l
C
x xt
w w , (1)
where , , 1,3it i w and ix , stand for mass density, time variable, components of the
disturbance displacement vector w and Cartesian coordinates; , , , 1,3ijklC i j k l are
dependent on initial strain moduli of elasticity for small elastic disturbance
ijkl ijkl ijklmn mnC C . (2)
In this formula , 1,3mn m n stands for Cartesian components of initial strain tensor,
Cijkl and Γijklmn are of order two and three elasticity moduli of the body.
The formula (2) is valid for small elastic strains εmn of an infinitesimal order αε.
Elastic disturbance is small as against initial strain field. This means that displacement
gradients l kx w are quantities of higher order of smallness in comparison with strains εmn.
We will consider the components l kx w as quantities of the infinitesimal order 2
e .
For isotropic bodies, the components Cijkl and Гijklmn represent isotropic tensors
of rank four and six respectively
ijkl ij kl ik jl il kjC , ijklmn ij kl mn ,
1 2
3 6ijklmn ij kl mn ij kl mn kn lm ikm jln
nl m m .
Here ij and jln stand for Kronecker’s delta and Levi-Civita symbols; , and , ,l m n
denote Lamé and Murnagan constants. Parentheses in the denotation ij kl mn mean
symmetrization with respect to the enclosed indices.
For many engineering materials the moduli λ, μ and l, m, n are quantities of the
same order of magnitude. Hence the second term in the formula (2) is quantities of the
order αε as compared to the first one. So, acoustic anisotropy induced by strain is weak.
Let n be a straight line crossing the area in the direction of unit vector
1 2 3, ,n n nn and
0
1e
ij k L
x l
n be a norm of strain tensor gradient on the
segment Ln = n. The value ln is characteristic of optical inhomogeneity of the
body — the greater is ln , the weaker is optical inhomogeneity along the direction n.
2. Directional sounding of strained body
External narrow ultrasonic beam (pulsed or continuous) can be used for elastic waves
in the body excitation. A schematic model for such sounding implementation is shown
in fig. 1. It includes an ultrasound vibration generator 1, for instance, a piezoelectric
transducer and an acoustic waveguide 2 with bevel face 3. The waveguide has been
fabricated from the same material as the body. Owing to this differences in acoustical
ISSN 1816-1545 Фізико-математичне моделювання та інформаційні технології
2010, вип. 12, 179-188
181
properties of the waveguide and the body are small quantities of infinitesimal order
. The plate of the transducer 1 is rigidly connected to the bevel face 3 of the wave-
guide 2. Depending on polarization, it produces normal or tangential displacement on
some area of the bevel face 3. In-plane dimensions of the transducer plate 1 are much
bigger than the wavelength. Practically parallel and homogeneous in its cross-section
ultrasonic beam 4 is formed in the waveguide owing to this. The beam propagates in
direction n normal to the bevel face. The waveguide is applied to the body surface with
some small pressure, necessary to produce cohesion in tangential direction. The area
of contact of the waveguide and the body is wetted by immersion liquid. Another
waveguide 5, identical to the first one, is applied to the opposite surface of the body.
It serves to transfer the beam from the body to sensing devices without distorting
the wave. Such sounding technique minimizes reflection and dispersion of the incident
wave on the «waveguide–body» and «body–waveguide» boundaries.
Uniform in its cross-section sounding beam crosses the interface «waveguide–
body» and penetrates into the body’s volume . Here it interacts with acoustically
inhomogeneous medium and gains some gradients in normal to n directions. However,
as the medium inhomogeneity is weak and the beam’s diameter is small enough, acqui-
red nonuniformity of sounding wave field will be also small. We will use this to simp-
lify the mathematical model (1). To do this we rewrite the system (1) in a Cartesian
system 1 2 3, ,y y y , whose 3y axis is directed along n
2 2 22
2 2
3 33
1 j j j j ji
ij ij oij opij oij
o o p o
a b a a b
y y y y y yt y
n n n n nw w w w ww , (3)
where , 1,2o p , 11 22 33 is the first invariant of the initial strain tensor,
1
0il ijkl j ka C n n n , 1
0
3
ijkl ijkl
ij j oj k
o
C C
b n n n
y y
n ,
0
1
oij ijkl oj k j oka C n n n n
n ,
0
1
opij ijkl oj pka C n n
n ,
0 3
1 ijkl ijkl
oij j pj ok
p
C C
b n n n
y y
n ,
0 is mass density of unstrained body, 1 2 3, ,o o o on n nn is unit vector of oy axis.
The components ,il oila a n n and opilan in equation (3) are quantities of the same order
of magnitude. However, since the body is sounding by homogeneous in its cross-section
narrow beam and acoustical inhomogeneity of the body is weak, we can consider the
derivatives 2
3l oy y w and 2
l o py y w as small quantities as against 2 2
3l y w .
Similarly, the coefficients ilbn and oilbn are quantities of the same order of magnitude, but
derivatives l oy w are small quantities as against 3l y w . Hence, in the first appro-
ximation we can neglect the last three terms in the right hand side of equation (3), con-
tained normal to n gradients of the disturbed wave field. This yields (using notation 3y y )
Vasyl Chekurin
Theory of integral acoustoelasticity for 3-D stress-strained state
182
22
2 21 j ji
ij ija b
yt y
n nw ww . (4)
In the absence of initial strain we should substitute 0ij into (2). This reduces
the system (4) to the system of 1-D wave equations for homogeneous elastic body
22
0
2 2
ji
ija
t y
n ww ,
where 0
ija n are components of acoustical tensor for unstrained body
0 1 0 0
0 ,ij ij ij ijkl k la C C C n n n n n . (5)
For the body isotropic in its initial unstrained state
0 1
0ij i j ija n n n .
In the basis 1 2, ,n n n the matrix 0
ija n becomes diagonal
0 0 2
11 22 0 Ta a C n n , 0 2
33 02 La C n .
Here CL and CT are the phase velocities of longitudinal and transversal acoustic waves.
It is useful to represent tensors ilan and ilbn in the form
0
ij il lj lja a n n n , 1 0
ij il ljb l a
n n n n . (6)
Here 0 0 0, ,ij ik kj ij ij ik kj ijS a l S b S n n n n n n n n stands for components of tensor inverse
to tensor represented by components 0
ijC n : 10 0
kl ijS C
n n .
Dimensionless components ij
n and ij
n represent material tensors responsible
for strain-induced acoustical anisotropy and inhomogeneity of the body in direction n.
In the basis of the system 1 2 3, ,y y y the matrix ij
n looks like
22 21 31
12 11 32
13 23 332
T T T L
ij T T T L
T T L L
n n n
n n n n
n n n
, (7)
where ij
n stands for initial strain components in the basis 1 2, ,n n n , , , ,T T L L
are dimensionless elasticity moduli
2T
n
, T
m
,
2
2L
m
,
2
2L
l
. (8)
ISSN 1816-1545 Фізико-математичне моделювання та інформаційні технології
2010, вип. 12, 179-188
183
3. Models for sounding by longitudinally and transversally polarized plane waves
Longitudinally and transversally polarized plane waves propagate in solids with distinct
phase velocities CL and CT. This enables us to consider the cases of sounding of the
body by longitudinal and transversal waves separately.
Let body is sounding by longitudinal plane wave 3 0,s s
Lw y t W f C t y .
In this case on the body inside surface 0z boundary conditions for displacement
vector components iw acts
1 20 0 0z z w w , 3 00 Lz W f C t w , (9)
where W0 stands for an amplitude of the transmitted wave, f (...) is a given function.
At these conditions, the transverse waves 1 ,z tw and 2 ,z tw are excited
in the body volume only by the longitudinal wave transmitted into . Since acoustical
anisotropy is weak, the coefficients 13 13,a b n n and 23 23,a b n n in the first and second equa-
tions (3) are small quantities of infinitesimal order . Hence, amplitudes of the
transverse waves 1 ,z tw and 2 ,z tw will be small as compared to the longitudinal
one’s 3 ,z tw . Since the coefficients 31 31,a b n n and 32 32,a b n n at the terms, accounting
in the third equation (3) the effect of the transverse waves on the longitudinal one, are
also small quantities of infinitesimal order , the terms 2 2
31 1a y n w ,
31 1b y n w and 2 2
32 2 32 2,a y b y n nw w are small quantities of infinitesimal
order 2
as compared to the term 2 2
33 3 33 3,a y b y n nw w . If to neglect them
in the first approach, we will arrive from the system (5) at the equation
2 2
33 3321 a b
yy
n n
2
w w w
t
(10)
and at the system of two inhomogeneous wave equations for the components 1 2,w w
22
21 p po
op op oa b g
yy
n n
2
w ww
t
, , 1,2o p . (11)
Let now the body be sounding by transversal plane wave. In this case displace-
ments 1w and 2w are prescribed as functions of time on the body inside surface
0z whereas the longitudinal displacement 3w w equals zero
0
0p p p Tz
W f C t
w , 0 0z w . (12)
Here 0
pW are the amplitudes of transmitted wave, (...)pf are given functions.
Vasyl Chekurin
Theory of integral acoustoelasticity for 3-D stress-strained state
184
Reasoning similarly as in the case of sounding by longitudinal wave, we reduce
the system (5) to following homogeneous system
22
21 p po
op opa b
yy
n n
2
w ww
t
(13)
and one inhomogeneous wave equation with respect to the longitudinal component w
2 2
33 3321 a b g
yy
n n
2
w w w
t
. (14)
In formulae (10), (11), (13) and (14) the following denotations were used
2
3 3o o og a b
yy
n n
2
w w ,
2
3 3
p p
p pg a b
yy
n n
2
w w
.
4. Harmonic waves
In the case of longitudinally polarized harmonic wave
, exps
Ly t W i t y C
sw ,
where i is imaginary unit, is circular frequency of the wave, we will search a solu-
tion of the equation (10) in the form
exp LW y i t y C w . (15)
Substituting presentation (15) into equation (10), using dimensionless coordinate
y l n and taking into account formulas (6), we will come to the ordinary differen-
tial equation in unknown function W
2
33 33 3321 1
4
LdW d W dW
i
d dd
n n n
33
33 0
2L
i W
n
n . (16)
Here L L l n — dimensionless longitudinal wavelength
Since the acoustical inhomogeneity is small, the length ln is much bigger than
the wavelength L , hence L is a small dimensionless parameter. We will consider it
as a small quantity of infinitesimal order . It follows from formulas (7), (8) that 33
n
is a dimensionless parameter of the order of unit. Function W is slowly changing —
it varies on distances 1 . Hence its derivatives 2 2,dW d d W d are
ISSN 1816-1545 Фізико-математичне моделювання та інформаційні технології
2010, вип. 12, 179-188
185
magnitudes of the order of W . Comparing three terms in the left hand side of equa-
tion (16) by their magnitudes, we can see that the first and the third ones are of the
order of one, whereas the second one is of the order of L . Neglecting the quanti-
ties of order in equation (16), we will obtain
33
1 0
2 L
L
dW
i W
d
n n , 331 2 e
L L L
n n . (17)
Coefficient 331 2 n determines the variation of the longitudinal wave amplitude,
caused by acoustical inhomogeneity of the body, parameter L
n is additional incre-
ment of the longitudinal wave phase, produced by strain.
Let us consider now the sounding of the body by transversally polarized harmo-
nic plane wave exps
o o TW i t z C
sw , 1,2p .
Representing the solution of the system (13) in the form
expo o TW z i t z C w ,
we will arrive at a time-independent system in unknown functions 1W and 2W
of the structure similar to (16). Neglecting the terms of the order of as against
the terms of the order one, it will be reduced to the form
1 0
2
o
op op op p
T
dW
i W
d
n n . (18)
Introducing 2×1-matrix T1 2
ˆ ,W W W , we can rewrite the system (18)
in a matrix form
ˆ
ˆ ˆ ˆ ˆ 0T
T
dW
A i E I W
d
n n n , (19)
where 11 12
21 22
1ˆ
2
A
n n
n
n n
,
22 11 12
12 11 22
2
ˆ
2 2
e e e
T
e e e
E
n n n
n
n n n
,
11 22 33
1 1
2
e e
T T
n n n n .
Matrix Ân determines variations of the amplitudes of the transverse waves 1 ,tw and
2 ,tw , owing to strain-induced acoustical inhomogeneity; the parameter T
n deter-
mines an additional increment of the absolute phase each of the waves 1 ,tw and
Vasyl Chekurin
Theory of integral acoustoelasticity for 3-D stress-strained state
186
2 ,tw , whereas matrix Ên is responsible for an increment of phase difference bet-
ween these two waves, caused by acoustical anisotropy.
5. Ray acoustoelasticity integrals
Due to (9), we should subordinate solution of equation (17) W( y) to the boundary
condition 0(0)W W . In the issue we obtain
0 33
0
1exp
2 L
L
W W i d
n n .
So, a longitudinally polarized ultrasonic beam propagating in a direction n crossing
the strained body produces in its volume a longitudinal wave
0
0 0
2, exp expL L
L L
t W d i t d
n nw , (20)
which amplitude 0 330
exp 1 2W d
n and phase
0
2
L L
L L
d
n n
change along n due to the initial strain distribution on this direction.
Let l n be the dimensionless body’s diameter in the direction n. Then, in comp-
liance with solution (20), the increment of the wave phase on the segment 0, l
n
equals 2 L Ll n n . The first term in this expression determines the phase incre-
ment in the absence of strain, whereas the second one
33 0
0 0
2 1 1 2
2
l l
e e
L L L
L
d d
n n
n n n (21)
is responsible for additional phase increment caused by initial strain field.
Due to (12) the functions , 1,2oW o should be subordinated to the boundary
conditions 0(0)o oW W , where 0
oW are the complex amplitudes of the transmitted
transversally polarized wave. Their modules and the difference of arguments determine
the polarization state of sounding wave at the input in the body.
Solution of the matrix equation (19) for these conditions looks like
0
0 0
2 ˆ ˆ ˆ ˆˆ , exp T
T T
t A d i t I E I d
n n nw W ,(22)
where T1 2ˆ , , , ,t t t w w w , T0 0
1 2
ˆ ,W WW , Î is unity 2 2 matrix.
ISSN 1816-1545 Фізико-математичне моделювання та інформаційні технології
2010, вип. 12, 179-188
187
As we can see from the solution (22), both components 1 ,tw and 2 ,tw
have been traveled through the body, acquire absolute phase increment 2 Tl n
T
n on the path 0, l
n , where
11 22 33
0 0
1
l l
e e e
T T
T
d d
n n
n n n n n (23)
determines the additional phase increment caused by initial strain field.
Besides that the additional phase difference between the components 1 ,tw
and 2 ,tw arises. It is determined by two ray integrals
1 11 22 2 12
0 0
,
2
l l
e e e
T T T T
T T
I d I d
n n
n n n n n . (24)
Conclusion. Mathematical models for interaction of longitudinally and transversally
polarized ultrasonic beams with 3-D strain field in solids have been developed. Taking
into account the weakness of strain-induced acoustical inhomogeneity and anisotropy it
has been shown that the amplitude of longitudinally polarized wave changes along the
direction of the wave propagation due to strain component distributions on this direc-
tion and it satisfies the ordinary differential equation (17). Cartesian components of the
amplitude of transversally polarized wave, crossing the body in some direction, satisfy,
in the approximation of weak acoustical inhomogeneity and anisotropy, the system
(18) of equations with the coefficients dependent on initial strain’s distribution.
Integral relationships (21) and (23), (24) connect line integrals of strain compo-
nent distributions along any direction to measured phase and polarization parameters
of longitudinally and transversally polarized waves crossing the body in this direction.
So, if to sound a strained body by longitudinally polarized ultrasonic beam and mea-
sure the phase increment, has been acquired by the wave on its path, one can determine
a value of the ray integral (21). Similarly, sounding the body by transversally polarized
ultrasonic beam and measuring the changes of the absolute phase and polarization
state, have been acquired by the wave, one can determine values of the ray integrals
(23) and (24). Such measurements, carried out for a set of directions, form a posteriori
data set that can be used commonly with the line integrals (21) and (23), (24) to formu-
late inverse problems for computing tomography of the initial strain field.
References
[1] Hughes, D. S. Second-order elastic deformation of solids / D. S. Hughes, J. L. Kelly // Phys. Rev. —
1953. — Vol. 92, No 5. — P. 1145-1149.
[2] Toupin, R. A. Sound waves in deformed perfectly elastic materials, acoustoelastic effect /
R. A. Toupin, B. Berstein // Acoustic Society of America. — 1961. — Vol. 33, No 2. — P. 216-225.
Vasyl Chekurin
Theory of integral acoustoelasticity for 3-D stress-strained state
188
[3] Гузь, А. Н. Введение в акустоупругостьм / А. Н. Гузь, Ф. Г. Махорт, О. И. Гуща. — Киев:
Наук. думка, 1977. — 152 с.
[4] Гузь, А. Н. Упругие волны в телах с начальными (остаточными) напряжениями / А. Н. Гузь. —
Киев: «А. С. К.», 2004. — 672 с.
[5] Чекурін, В. Моделі динаміки пружних збурень у неоднорідно деформованому континуумі /
В. Чекурін, О. Кравчишин // Фіз.-мат. моделювання і інформаційні технології. — 2006. —
Вип. 3. — С. 199-215.
[6] Kravchyshyn, O. Z. Acoustoelasticity model of inhomogeneously deformed bodies / O. Z.Kravchy-
shyn, V. F. Chekurin // Mechanics of Solid. — 2009. — Vol. 44, No 5. — P. 781-791.
[7] Чекурін, В. Ф. Пружні збурення в неоднорідно деформованих твердих тілах/ В. Чекурін,
О. Кравчишин. — Львів: «Сполом», 2008. — 152 с.
Теорія інтегральної акустопружності
для тривимірного напружено-деформованого стану
Василь Чекурін
Виходячи з моделі малого пружного збурення в неоднорідно деформованому тілі та беручи
до уваги слабкість акустичних неоднорідності й анізотропії, індукованих деформацією,
розроблено теорію інтегральної акустопружності. Сформульовані моделі взаємодії вузь-
ких поляризованих ультразвукових пучків із тривимірним полем деформації у твердому
тілі. У рамках моделей отримані інтегральні співвідношення акустопружності, що пов’я-
зують зміни фаз коливань і стану поляризації поздовжньо та поперечно поляризованих
ультразвукових хвиль, які пройшли через деформоване середовище, з інтегралами від розпо-
ділів компонент тензора початкової деформації вздовж напрямку поширення хвиль.
Їх можна використати для формулювання задач обчислювальної томографії напружено-
деформованого стану твердих тіл.
Теория интегральной акустоупругости
для трехмерного напряженно-деформированного состояния
Василь Чекурин
Исходя из модели малого упругого возмущения в неоднородно деформированном теле и при-
нимая во внимание, что индуцированные деформацией акустические неоднородность и
анизотропия являются слабыми, разработана теория интегральной акустоупругости.
Сформулированы математические модели взаимодействия узких поляризованных ультра-
звуковых пучков с трехмерным полем деформации в твердом теле. В рамках моделей полу-
чены лучевые интегралы акустоупругости — соотношения, устанавливающие аналитичес-
кую связь между изменениями фаз колебаний и состояния поляризации продольно и попе-
речно поляризованных волн, прошедших через деформированную среду, с линейными интег-
ралами от распределений компонент начальных деформаций на направлениях распрост-
ранения волн. Их можно использовать для постановки задач вычислительной томографии
напряженно-деформированного состояния твердых тел.
Отримано 21.07.10
|