Квазі-лінеарність у дискретних моделях залежностей та відкриття латентного фактору трьох ефектів
Для дискретних моделей залежностей з ланцюговою (або деревовидною) структурою показано, що коли проміжна (сепараторна) змінна є бінарною, можна факторизувати (декомпозувати) транзитивну залежність згідно відтинків ланцюга. Ця властивість (“квазі-лінеарність”) для структури у формі “зірка з трьома п...
Збережено в:
| Дата: | 2006 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Інститут програмних систем НАН України
2006
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/2333 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Квазі-лінеарність у дискретних моделях залежностей та відкриття латентного фактору трьох ефектів/ О.С. Балабанов // Проблеми програмування. — 2006. — N 4. — С. 28-36. — Бібліогр.: 12 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Для дискретних моделей залежностей з ланцюговою (або деревовидною) структурою показано, що коли
проміжна (сепараторна) змінна є бінарною, можна факторизувати (декомпозувати) транзитивну залежність згідно відтинків ланцюга. Ця властивість (“квазі-лінеарність”) для структури у формі “зірка з трьома променями” імплікує “тріад-стримування” – спеціальне обмеження типу рівність на добуток парних
залежностей. Дотримання чинності тріад-стримування може правити за свідчення для ідентифікації прихованої бінарної змінної, яка є відповідальна за асоціацію трьох дискретних змінних.
Для дискретных моделей зависимостей с цепочной (или древовидной) структурой показано, что когда промежуточная (сепарирующая) переменная является бинарной, можно факторизовать (декомпозировать) путевую (транзитивную) зависимость на произведение зависимостей для фрагментов пути. Это свойство (“квази-линеарность”) имплицирует для структуры вида “трехлучевая звезда” специальное ограничение типа равенство на произведение парных зависимостей – “триад-констрэйнт”. Выполнение триад-констрэйнта может служить свидетельством для идентификации скрытой бинарной переменной, которая влияет на три дискретные переменные.
It is demonstrated for a discrete model with tree-like structure, that if there is a binary separating variable, then a path dependence (via this variable) may be factorized accordingly to this variable (into a corresponding subpath dependencies). This quasi-linearity property implies the “triad-constraint” on product of pairwise dependencies in star-like structure with three endpoints. So the triad-constraint satisfaction facilitates a discovery of a hidden binary variable (latent class), which is responsible for associations among three respective discrete manifest variables.
|
|---|---|
| ISSN: | 1727-4907 |