Chemical Design of Carbon-Coated Al2o3 Nanoparticles
The novel approach to chemical design of carbon-coated Al2O3 nanoparticles with an average particle size of 8-10 nm was developed. Carbon coating was synthesised by modification of fumed alumina support with 4,4’-methylenebis-(phenylisocyanate) and its subsequent pyrolysis at 700oC. In order to synt...
Saved in:
| Published in: | Хімія, фізика та технологія поверхні |
|---|---|
| Date: | 2010 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут хімії поверхні ім. О.О. Чуйка НАН України
2010
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/29002 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Chemical Design of Carbon-Coated Al2o3 Nanoparticles / L.F. Sharanda, I.V. Babich, Yu.V. Plyuto // Хімія, фізика та технологія поверхні. — 2010. — Т. 1, № 3. — С. 326-332. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-29002 |
|---|---|
| record_format |
dspace |
| spelling |
Sharanda, L.F. Babich, I.V. Plyuto, Yu.V. 2011-11-27T17:50:02Z 2011-11-27T17:50:02Z 2010 Chemical Design of Carbon-Coated Al2o3 Nanoparticles / L.F. Sharanda, I.V. Babich, Yu.V. Plyuto // Хімія, фізика та технологія поверхні. — 2010. — Т. 1, № 3. — С. 326-332. — Бібліогр.: 30 назв. — англ. 2079-1704 https://nasplib.isofts.kiev.ua/handle/123456789/29002 544.723.214+544.72.023.2+549.521.4+54-31+546.26.-162 The novel approach to chemical design of carbon-coated Al2O3 nanoparticles with an average particle size of 8-10 nm was developed. Carbon coating was synthesised by modification of fumed alumina support with 4,4’-methylenebis-(phenylisocyanate) and its subsequent pyrolysis at 700oC. In order to synthesise the samples with increased carbon content, the grafting-pyrolysis cycle was repeated. The above mentioned synthetic route resulted in the samples with carbon loading of 7.6 and 14.5 wt. %. Characterisation of the synthesised samples with Raman, FTIR, TG/DTG-DTA, N2 adsorption and SEM techniques revealed the formation of continuous carbon coating on the surface of Al2O3 nanoparticles after the first grafting-pyrolysis cycle. The increase of the carbon loading on the alumina surface to 14.5 wt. % (two grafting-pyrolysis cycles) resulted in the formation of the carbon coating with more regular graphitic structure. Розроблений новий метод хімічного дизайну вуглецевого покриття на поверхні наночастинок пірогенного Al2O3 розміром 8–10 нм. Вуглецеве покриття синтезували шляхом модифікування поверхні пірогенного оксиду алюмінію 4,4-метилендифенілдиізоціанатом та подальшим його піролізом при 700oC. З метою одержання зразків з більш високим вмістом вуглецю цикл "модифікування–піроліз" повторювали. Вищеописана процедура дозволила синтезувати зразки з вмістом вуглецю 7,6 та 14,5 % ваг. Дослідження синтезованих зразків методами раманівської та ІЧ-спектроскопії, TГ/ДTГ-ДTA, низькотемпературної адсорбції азоту та СЕM показало, що утворення суцільного вуглецевого покриття на поверхні пірогенного Al2O3 відбувається вже після проведення першого циклу "модифікування–піроліз". Повторення циклу "модифікування–піроліз" МДІ приводить до формування вуглецевого покриття з більш впорядкованою графітовою структурою. Разработан новый метод химического дизайна углеродного покрытия на поверхности наночастиц пирогенного Al2O3 размером 8–10 нм. Углеродное покрытие было синтезировано путем модифицирования поверхности пирогенного оксида алюминия 4,4–метилендифенилдиизоцианатом с последующим его пиролизом при 700oC. Для того чтобы синтезировать образцы с более высоким содержанием углерода, цикл "модифицирование–пиролиз" повторяли. Описанная выше процедура позволила синтезировать образцы с содержанием углерода 7,6 и 14,5% вес. Исследование синтезированных образцов методами рамановской и ИК-спектроскопии, TГ/ДTГ-ДTA, низкотемпературной адсорбции азота и СЭM показало, что образование сплошного углеродного покрытия на поверхности пирогенного Al2O3 происходит уже после проведения первого цикла "модифицирование–пиролиз". Повторение цикла "модифицирование–пиролиз" МДИ приводит к формированию углеродного покрытия с более упорядоченной графитовой структурой. en Інститут хімії поверхні ім. О.О. Чуйка НАН України Хімія, фізика та технологія поверхні Неорганічні та вуглецеві наноматеріали і наносистеми Chemical Design of Carbon-Coated Al2o3 Nanoparticles Хімічний дизайн вуглецевого покриття на поверхні наночастинок Al2O3 Химический дизайн углеродного покрытия на поверхности наночастиц AI2O3 Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Chemical Design of Carbon-Coated Al2o3 Nanoparticles |
| spellingShingle |
Chemical Design of Carbon-Coated Al2o3 Nanoparticles Sharanda, L.F. Babich, I.V. Plyuto, Yu.V. Неорганічні та вуглецеві наноматеріали і наносистеми |
| title_short |
Chemical Design of Carbon-Coated Al2o3 Nanoparticles |
| title_full |
Chemical Design of Carbon-Coated Al2o3 Nanoparticles |
| title_fullStr |
Chemical Design of Carbon-Coated Al2o3 Nanoparticles |
| title_full_unstemmed |
Chemical Design of Carbon-Coated Al2o3 Nanoparticles |
| title_sort |
chemical design of carbon-coated al2o3 nanoparticles |
| author |
Sharanda, L.F. Babich, I.V. Plyuto, Yu.V. |
| author_facet |
Sharanda, L.F. Babich, I.V. Plyuto, Yu.V. |
| topic |
Неорганічні та вуглецеві наноматеріали і наносистеми |
| topic_facet |
Неорганічні та вуглецеві наноматеріали і наносистеми |
| publishDate |
2010 |
| language |
English |
| container_title |
Хімія, фізика та технологія поверхні |
| publisher |
Інститут хімії поверхні ім. О.О. Чуйка НАН України |
| format |
Article |
| title_alt |
Хімічний дизайн вуглецевого покриття на поверхні наночастинок Al2O3 Химический дизайн углеродного покрытия на поверхности наночастиц AI2O3 |
| description |
The novel approach to chemical design of carbon-coated Al2O3 nanoparticles with an average particle size of 8-10 nm was developed. Carbon coating was synthesised by modification of fumed alumina support with 4,4’-methylenebis-(phenylisocyanate) and its subsequent pyrolysis at 700oC. In order to synthesise the samples with increased carbon content, the grafting-pyrolysis cycle was repeated. The above mentioned synthetic route resulted in the samples with carbon loading of 7.6 and 14.5 wt. %. Characterisation of the synthesised samples with Raman, FTIR, TG/DTG-DTA, N2 adsorption and SEM techniques revealed the formation of continuous carbon coating on the surface of Al2O3 nanoparticles after the first grafting-pyrolysis cycle. The increase of the carbon loading on the alumina surface to 14.5 wt. % (two grafting-pyrolysis cycles) resulted in the formation of the carbon coating with more regular graphitic structure.
Розроблений новий метод хімічного дизайну вуглецевого покриття на поверхні наночастинок пірогенного Al2O3 розміром 8–10 нм. Вуглецеве покриття синтезували шляхом модифікування поверхні пірогенного оксиду алюмінію 4,4-метилендифенілдиізоціанатом та подальшим його піролізом при 700oC. З метою одержання зразків з більш високим вмістом вуглецю цикл "модифікування–піроліз" повторювали. Вищеописана процедура дозволила синтезувати зразки з вмістом вуглецю 7,6 та 14,5 % ваг. Дослідження синтезованих зразків методами раманівської та ІЧ-спектроскопії, TГ/ДTГ-ДTA, низькотемпературної адсорбції азоту та СЕM показало, що утворення суцільного вуглецевого покриття на поверхні пірогенного Al2O3 відбувається вже після проведення першого циклу "модифікування–піроліз". Повторення циклу "модифікування–піроліз" МДІ приводить до формування вуглецевого покриття з більш впорядкованою графітовою структурою.
Разработан новый метод химического дизайна углеродного покрытия на поверхности наночастиц пирогенного Al2O3 размером 8–10 нм. Углеродное покрытие было синтезировано путем модифицирования поверхности пирогенного оксида алюминия 4,4–метилендифенилдиизоцианатом с последующим его пиролизом при 700oC. Для того чтобы синтезировать образцы с более высоким содержанием углерода, цикл "модифицирование–пиролиз" повторяли. Описанная выше процедура позволила синтезировать образцы с содержанием углерода 7,6 и 14,5% вес. Исследование синтезированных образцов методами рамановской и ИК-спектроскопии, TГ/ДTГ-ДTA, низкотемпературной адсорбции азота и СЭM показало, что образование сплошного углеродного покрытия на поверхности пирогенного Al2O3 происходит уже после проведения первого цикла "модифицирование–пиролиз". Повторение цикла "модифицирование–пиролиз" МДИ приводит к формированию углеродного покрытия с более упорядоченной графитовой структурой.
|
| issn |
2079-1704 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/29002 |
| citation_txt |
Chemical Design of Carbon-Coated Al2o3 Nanoparticles / L.F. Sharanda, I.V. Babich, Yu.V. Plyuto // Хімія, фізика та технологія поверхні. — 2010. — Т. 1, № 3. — С. 326-332. — Бібліогр.: 30 назв. — англ. |
| work_keys_str_mv |
AT sharandalf chemicaldesignofcarboncoatedal2o3nanoparticles AT babichiv chemicaldesignofcarboncoatedal2o3nanoparticles AT plyutoyuv chemicaldesignofcarboncoatedal2o3nanoparticles AT sharandalf hímíčniidizainvuglecevogopokrittânapoverhnínanočastinokal2o3 AT babichiv hímíčniidizainvuglecevogopokrittânapoverhnínanočastinokal2o3 AT plyutoyuv hímíčniidizainvuglecevogopokrittânapoverhnínanočastinokal2o3 AT sharandalf himičeskiidizainuglerodnogopokrytiânapoverhnostinanočasticai2o3 AT babichiv himičeskiidizainuglerodnogopokrytiânapoverhnostinanočasticai2o3 AT plyutoyuv himičeskiidizainuglerodnogopokrytiânapoverhnostinanočasticai2o3 |
| first_indexed |
2025-12-07T18:33:57Z |
| last_indexed |
2025-12-07T18:33:57Z |
| _version_ |
1850875510414901248 |