Usage of Silanes when Making Protective Coatings for Metal by Uv Curing
Adhesive strength of coatings depends on the nature and density of adhesive bonds. It has been shown that using silanes with olefinic carbon as an adhesive layer on metal substrates lets increase significantly protective effectiveness and life time of UV lacquer coatings due to formation of the Me-О...
Saved in:
| Published in: | Хімія, фізика та технологія поверхні |
|---|---|
| Date: | 2010 |
| Main Authors: | , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут хімії поверхні ім. О.О. Чуйка НАН України
2010
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/29003 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Usage of Silanes when Making Protective Coatings for Metal by Uv Curing / O.S. Aykasheva, O.E. Babkin, L.A. Babkina, S.V. Proskuryakov, A.G. Esenovsky // Хімія, фізика та технологія поверхні. — 2010. — Т. 1, № 3. — С. 333-337. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-29003 |
|---|---|
| record_format |
dspace |
| spelling |
Aykasheva, O.S. Babkin, O.E. Babkina, L.A. Proskuryakov, S.V. Esenovsky, A.G. 2011-11-27T17:53:56Z 2011-11-27T17:53:56Z 2010 Usage of Silanes when Making Protective Coatings for Metal by Uv Curing / O.S. Aykasheva, O.E. Babkin, L.A. Babkina, S.V. Proskuryakov, A.G. Esenovsky // Хімія, фізика та технологія поверхні. — 2010. — Т. 1, № 3. — С. 333-337. — Бібліогр.: 8 назв. — англ. 2079-1704 https://nasplib.isofts.kiev.ua/handle/123456789/29003 661.185 Adhesive strength of coatings depends on the nature and density of adhesive bonds. It has been shown that using silanes with olefinic carbon as an adhesive layer on metal substrates lets increase significantly protective effectiveness and life time of UV lacquer coatings due to formation of the Me-О-Si-C covalent bonds. Silanes show optimum properties when unimolecular film is formed on the surface. Адгезійна міцність покриттів залежить від природи і щільності адгезійних зв’язків. Показано, що використання силанів з олефіновим вуглецем як адгезійного шару на металевих підкладинках істотно поліпшує захисні властивості та довговічність покриттів, стабілізованих шляхом УФ-опромінювання, завдяки утворенню ковалентних зв’язків Мe–O–Si–C. Силани виявляють оптимальні властивості при утворенні мономолекулярної плівки на поверхні. Адгезионная прочность покрытий зависит от природы и плотности адгезионных связей. Показано, что использование силанов с олефиновым углеродом в качестве адгезионного слоя на металлических подложках существенно улучшает защитные свойства и долговечность покрытий, стабилизированных путем УФ-облучения, благодаря образованию ковалентных связей Мe–O–Si–C. Силаны обнаруживают оптимальные свойства при образовании мономолекулярной пленки на поверхности. en Інститут хімії поверхні ім. О.О. Чуйка НАН України Хімія, фізика та технологія поверхні Неорганічні та вуглецеві наноматеріали і наносистеми Usage of Silanes when Making Protective Coatings for Metal by Uv Curing Використання силанів при приготуванні захисних покриттів для металів шляхом УФ-опромінювання Использование силанов при приготовлении защитных покрытий для металлов путем УФ-облучения Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Usage of Silanes when Making Protective Coatings for Metal by Uv Curing |
| spellingShingle |
Usage of Silanes when Making Protective Coatings for Metal by Uv Curing Aykasheva, O.S. Babkin, O.E. Babkina, L.A. Proskuryakov, S.V. Esenovsky, A.G. Неорганічні та вуглецеві наноматеріали і наносистеми |
| title_short |
Usage of Silanes when Making Protective Coatings for Metal by Uv Curing |
| title_full |
Usage of Silanes when Making Protective Coatings for Metal by Uv Curing |
| title_fullStr |
Usage of Silanes when Making Protective Coatings for Metal by Uv Curing |
| title_full_unstemmed |
Usage of Silanes when Making Protective Coatings for Metal by Uv Curing |
| title_sort |
usage of silanes when making protective coatings for metal by uv curing |
| author |
Aykasheva, O.S. Babkin, O.E. Babkina, L.A. Proskuryakov, S.V. Esenovsky, A.G. |
| author_facet |
Aykasheva, O.S. Babkin, O.E. Babkina, L.A. Proskuryakov, S.V. Esenovsky, A.G. |
| topic |
Неорганічні та вуглецеві наноматеріали і наносистеми |
| topic_facet |
Неорганічні та вуглецеві наноматеріали і наносистеми |
| publishDate |
2010 |
| language |
English |
| container_title |
Хімія, фізика та технологія поверхні |
| publisher |
Інститут хімії поверхні ім. О.О. Чуйка НАН України |
| format |
Article |
| title_alt |
Використання силанів при приготуванні захисних покриттів для металів шляхом УФ-опромінювання Использование силанов при приготовлении защитных покрытий для металлов путем УФ-облучения |
| description |
Adhesive strength of coatings depends on the nature and density of adhesive bonds. It has been shown that using silanes with olefinic carbon as an adhesive layer on metal substrates lets increase significantly protective effectiveness and life time of UV lacquer coatings due to formation of the Me-О-Si-C covalent bonds. Silanes show optimum properties when unimolecular film is formed on the surface.
Адгезійна міцність покриттів залежить від природи і щільності адгезійних зв’язків. Показано, що використання силанів з олефіновим вуглецем як адгезійного шару на металевих підкладинках істотно поліпшує захисні властивості та довговічність покриттів, стабілізованих шляхом УФ-опромінювання, завдяки утворенню ковалентних зв’язків Мe–O–Si–C. Силани виявляють оптимальні властивості при утворенні мономолекулярної плівки на поверхні.
Адгезионная прочность покрытий зависит от природы и плотности адгезионных связей. Показано, что использование силанов с олефиновым углеродом в качестве адгезионного слоя на металлических подложках существенно улучшает защитные свойства и долговечность покрытий, стабилизированных путем УФ-облучения, благодаря образованию ковалентных связей Мe–O–Si–C. Силаны обнаруживают оптимальные свойства при образовании мономолекулярной пленки на поверхности.
|
| issn |
2079-1704 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/29003 |
| citation_txt |
Usage of Silanes when Making Protective Coatings for Metal by Uv Curing / O.S. Aykasheva, O.E. Babkin, L.A. Babkina, S.V. Proskuryakov, A.G. Esenovsky // Хімія, фізика та технологія поверхні. — 2010. — Т. 1, № 3. — С. 333-337. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT aykashevaos usageofsilaneswhenmakingprotectivecoatingsformetalbyuvcuring AT babkinoe usageofsilaneswhenmakingprotectivecoatingsformetalbyuvcuring AT babkinala usageofsilaneswhenmakingprotectivecoatingsformetalbyuvcuring AT proskuryakovsv usageofsilaneswhenmakingprotectivecoatingsformetalbyuvcuring AT esenovskyag usageofsilaneswhenmakingprotectivecoatingsformetalbyuvcuring AT aykashevaos vikoristannâsilanívpriprigotuvannízahisnihpokrittívdlâmetalívšlâhomufopromínûvannâ AT babkinoe vikoristannâsilanívpriprigotuvannízahisnihpokrittívdlâmetalívšlâhomufopromínûvannâ AT babkinala vikoristannâsilanívpriprigotuvannízahisnihpokrittívdlâmetalívšlâhomufopromínûvannâ AT proskuryakovsv vikoristannâsilanívpriprigotuvannízahisnihpokrittívdlâmetalívšlâhomufopromínûvannâ AT esenovskyag vikoristannâsilanívpriprigotuvannízahisnihpokrittívdlâmetalívšlâhomufopromínûvannâ AT aykashevaos ispolʹzovaniesilanovpriprigotovleniizaŝitnyhpokrytiidlâmetallovputemufoblučeniâ AT babkinoe ispolʹzovaniesilanovpriprigotovleniizaŝitnyhpokrytiidlâmetallovputemufoblučeniâ AT babkinala ispolʹzovaniesilanovpriprigotovleniizaŝitnyhpokrytiidlâmetallovputemufoblučeniâ AT proskuryakovsv ispolʹzovaniesilanovpriprigotovleniizaŝitnyhpokrytiidlâmetallovputemufoblučeniâ AT esenovskyag ispolʹzovaniesilanovpriprigotovleniizaŝitnyhpokrytiidlâmetallovputemufoblučeniâ |
| first_indexed |
2025-11-26T17:16:47Z |
| last_indexed |
2025-11-26T17:16:47Z |
| _version_ |
1850764048906321920 |
| fulltext |
Хімія, фізика та технологія поверхні. 2010. Т. 1. № 3. С. 333–337
_____________________________________________________________________________________________
ХФТП 2010. Т. 1. № 3 333
UDC 661.185
USAGE OF SILANES WHEN MAKING PROTECTIVE
COATINGS FOR METAL BY UV CURING
O.S. Aykasheva, O.E. Babkin, L.A. Babkina, S.V. Proskuryakov, A.G. Esenovsky
Research & Development Company "INMA" Co.Ltd
118 Nab. Obvodnogo kanala, St.-Petersburg 190005, Russia, inmainc@mail.ru
Adhesive strength of coatings depends on the nature and density of adhesive bonds. It has been shown
that using silanes with olefinic carbon as an adhesive layer on metal substrates lets increase significantly
protective effectiveness and life time of UV lacquer coatings due to formation of the Me-О-Si-C covalent
bonds. Silanes show optimum properties when unimolecular film is formed on the surface.
Reducing the thickness of the paint coating to
the persistence of high security features is one of the
major trends in the paint industry.
Important role in this spectrum is the method
to paint the material. In [1] data are presented on
the conservation of protective coating characteris-
tics as dependent on the application method.
Application methods for decreasing production
of protective coating characteristics are as follows:
electrostatic spraying, air spraying, airless spraying,
inkjet poured, dipping, and brush. This difference is
explained by the different structure of the coating
formation with the density of its packing and size.
These relationships are of particular urgency
when high anticorrosive properties are required at
the film thickness of about 20 microns. In particu-
lar, anaphoretic coating allows for such a thick-
ness to withstand the salt fog chamber for 250 to
500 hours, electrophoresis for 1000 hours or more
[2]. Lower molecular weight oligomer in catapho-
retic arrangement leads to an increase in the pro-
tective coating behavior [3].
Method of curing UV radiation received indus-
trial development in the late 60-ies and is now con-
sidered to be one of the most promising. The advan-
tages of this method are: relatively high perform-
ance, low energy costs, simple equipment. How-
ever, curing by UV radiation is applicable to a lim-
ited number of paints and varnishes. It is used
mainly for obtaining coatings of materials capable
of cured through polymerization reaction. The prin-
ciple of cure is based on the ability of UV rays to
initiate the polymerization of these oligomeric mate-
rials. The energy of UV radiation is high – 12.3 eV
which is 2–4 times higher than the rays energy of
visible light. This allows the solidification of coat-
ings with a satisfactory rate at normal temperature.
The process of polymerization can be divided
into stages of initiation, development, and comple-
tion. The initiation stage begins the process of
formation of reactive particles (free radicals). Dur-
ing the irradiation of UV light, reactive radicals are
formed by chemical decomposition of photoinitia-
tor. The collapse of photoinitiator leads to the for-
mation of free radicals which react with carbon-
carbon double bonds of a film maker. As they are
highly reactive and rapidly solidified, there may be
high internal stresses that can lead to problems
with adhesion to some substrates, in particular, on
the metal. The molecular weight of film-forming
coatings for UV-curing is of 500 to 2500 g/mol [4].
Adhesion strength of coatings depends on the na-
ture and density of adhesive bonds. Bonds of different
nature may occur dissimilar bodies: chemical (ionic,
covalent, coordination) with energies from 65 to
1000 kJ/mol, hydrogen and van der Waals type (induc-
tion, dispersion, dipole, etc.), with energy not exceeding
50 kJ/mol in most cases. When coating, an interaction
with the substrate occurs at the time of contact with the
liquid paint material. However, the adhesion values of
liquid paint and of finished with solid coating are usu-
ally not equal. When forming the coating, as well as
during its operation, originally formed bonds can be
stored, destroyed, or supplemented by new bonds.
The junction of two dissimilar materials – adhe-
sives and substratum – perhaps is due to a spectrum
of the molecular forces – attraction, repulsion, dis-
persion interaction. The result of this interaction is
the adsorption of adhesive on the substrate surface.
Depending on the operating forces, adsorption can
be physical or chemical in nature. Formed during
this interim at the interface or boundary layer, the
polymer material has the structure and properties
different from those of bulk polymer. These differ-
O.S. Aykasheva, O.E. Babkin, L.A. Babkina et al.
_____________________________________________________________________________________________
334 ХФТП 2010. Т. 1. № 3
ences in properties are the result of restrictions of
molecular mobility in the adsorption layers. The
composition and structure of boundary layers exert
a decisive influence on the magnitude of interfacial
interaction and, accordingly, the adhesion of poly-
mers to solid surfaces.
The increase in adhesive strength, according
to the adsorption theory, is caused by changing the
chemical nature of the polymer and increasing the po-
larity of the substrate, for example, through oxidation.
When using a binder having active functional
groups, a chemisorption interaction can occur. Thus,
the interaction of components of polyurethane for-
mulations with metal oxides and hydroxides takes
place at ambient temperature in the reaction:
R–N=C=O+MeOH→R–NH–COOMe.
The adhesion strength is a multivariate index
dependent on the nature of polymer and substrate
as well as the formation conditions of coverage.
The coverage of monomeric and/or oligomeric
binder converted into a polymer (three-
dimensional) state directly on the substrate has
the highest adhesion. Monomers and oligomers in
some cases can be chemisorbed on the surface of
metals; their subsequent polymerization or poly-
condensation leads to the formation of grafted
polymers chemically bound to the metal.
The role of substrate in the adhesive interac-
tion is as significant as that of the film material.
The greatest difficulty is getting the adhesion-
resistant coatings on smooth non-porous sub-
strates (metals, glass) as well as on materials with
low surface energy.
Currently, the leading foreign firms engaged
in the development and manufacture of chemical
means of surface preparation conduct extensive
research and pilot projects to replace the highly
toxic chromate reagents with processing composi-
tions based on silanes [5, 6]. This provides a pro-
tection against corrosion due to the good barrier
properties of silane films formed on the surface
with a thickness of 4 to 20 nm which allows us to
assign these strata to nanocoatings, and technolo-
gies of such a treatment – to nanotechnologies.
Trialkoxysilanes are environmentally friendly
organometallic compounds produced at an indus-
trial scale. They have a general formula
R'(CH2)nSi(OR)3 where R' is organo-functional
group and OR is hydrolysed alkoxy-group: meth-
oxy- (OCH3), ethoxy- (OC2H5) or acetoxy-
(OCOCH3). Their structures are shown in Fig. 1.
Fig. 1. Trialkoxysilane structures
Trialkoxysilanes used to form a protective
coating on the metal surface should be hydro-
lyzed to form hydroxyl groups. It is an interaction
of these hydroxyl groups with metal hydroxides
present on metal surface resulting in bonding si-
lanes with metal surface. Hydrolysis of an ex-
posed alkoxy group (OR) in presence of water
results in the formation of silanol group (SiOH).
Hydrolysis usually occurs in dilute solutions of
silanes as follows
R–Si(OR)(OH)2 + H2O ↔ R'Si(OH)3 + ROH.
As a result of hydrolysis, silane-triplets are
formed. Mortar trialkoxysilanes become efficient
due to achieving an effective concentration of si-
lane-triplets. For the processing of inorganic sur-
faces, solutions of organo-alkoxy silanes are used
in water or organic solvents, aerosols mixed with
low-boiling solvents. When using aqueous solu-
tions, a 0.1 to 0.5% solution is prepared and rap-
idly applied to the surface of material. To improve
the condensing, surface is dried. During the subse-
quent hot drying of metal surfaces treated with
aqueous solutions of silanes, two condensation
reactions occur: one is between silanol groups of
soluted trialkoxysilane and hydroxides of metal
substrate resulted in the formation of covalent
bonds (MeOSi) (Fig. 2). Another one occurs be-
tween silanol groups to form links SiOSi.
As a result of such treatment, poly-organo-
siloxanes containing carbonyl functional groups
are formed on the surface of inorganic materials
chemically bound to it. The consumption of silanes
depends on the surface area of the material treated,
the content of hydroxyl groups on the surface, and
the sizes of molecules of the adhesion promoter.
Usage of Silanes when Making Protective Coatings
_____________________________________________________________________________________________
ХФТП 2010. Т. 1. № 3 335
Fig. 2. Scheme of the formation of a covalent link
Si–O–Me
Optimal properties of silanes appear in the
formation of a monomolecular layer on the sur-
face. In [7] calculations are made of the maxi-
mum consumption rates of some trialkoxysilanes
а0 (g/m2) needed for a monomolecular layer on
the surface of the material (Table 1).
Table 1. Trialkoxysilanes with a double bond - adhe-
sion promoters
No Chemical
type Structure Manufac-
turer
а0,
g/m2
1
vinyltri-
methoxy-
silane
(CH3O)3SiCH=CH2
Momen-
tive,
Wacker
1.9×
10-2
2
vinyltri-
ethoxy-
silane
(C2H5O)3SiCH=CH2
Momen-
tive,
Wacker
2.4×
10-2
3
vinyltri-
acetoxy-
silane
(CH3CO2)3SiCH=CH2 Wacker
3.0×
10-2
4
vinyl-
methyldi-
methoxy-
silane
(CH3O)2CH3SiCH=CH2 Wacker
5
3-
metacryl-
oxypropyl-
tri-
methoxy-
silane
Dow
Corning
Evonik
3.2×
10-2
6
vinyltri(2-
methoxy-
ethoxy)
silane
(CH3OCH2CH2O)3SiCH
=CH2
Momen-
tive,
Wacker
3.6×
10-2
If the interaction occurs only with surface
hydroxyl groups, the flow rate may be signifi-
cantly lower. In practice, organo-alkoxy-silanes
are used in quantities much larger than necessary
for the formation of a monolayer. However, in
this case a layered structure is formed.
The presence of a double bond in the organo-
functional group Y (Fig. 1) allows the adhesive
layer to participate in the polymerization reaction
of UV curing systems.
Table 1 shows the trialkoxysilanes forming
adhesive monolayers on the surface of substrate.
Standard thin-plate cold-rolled steel grade
08ps 0.8 mm thick were used as objects under
study stained with a pneumatic spray UV cur-
able lacquer (see recipe in Table 2), and cures
for installing an ORK-21M1 with a mercury
lamp DRT [8]. Figure 3 shows photographs of
plates during the test (0 hours, 50 hours,
72 hours) in the salt fog chamber (thickness of
the film is of 25–35 microns), treated trialkox-
ysilane No 15.10.3 and without treatment No
15.10.6. (GOST 20.57.406-81 method 215-3).
Table 2. Formulations of UV varnish caused by air-
spraying
No Component and its
characteristics
Application Mass
fraction
1 epoxy-acrylate MV
550, functionality 2
UV-film formation 40
2 dipropylene glycol-
diacryrilate
active thinner,
regulation viscosity
20
3 1- hydroxycyclo-
hexylfenilketone
photoinitiator
3
4 2, 4, 6-trimethyl-
benzoyldiphenyl
phosphineoxide
photoinitiator
1
5
isobornil-acrylate
active thinner,
regulation viscosity
36
Fig. 3. Samples in the salt fog chamber
O.S. Aykasheva, O.E. Babkin, L.A. Babkina et al.
_____________________________________________________________________________________________
336 ХФТП 2010. Т. 1. № 3
Photos plates demonstrate a significant in-
crease in the protective characteristics of UV
cured coatings by increasing the adhesion due to
formation of covalent bonds Me–O–Si–C.
Table 3 shows the results of measurements of
coating adhesion to the substrate (ISO 4624) de-
pending on the number of trialkoxysilane per sur-
face area (g/m2). Fig. 4 shows the variation of
adhesion as dependent on the number of layers of
trialkoxysilane (N) on the surface. Using of tri-
alkoxysilanes improves adhesion of lacquer UV
curing to the steel plate with 7.5·10-2 N/mm2
(No 9) up to 9.3 N/mm2 (No 3). Maximum
amount adhesion observed in coatings, the quan-
tity of trialkoxysilane on the surface protected
does not exceed a monolayer.
Non-hydrolysed organo-functional groups
with a double bond trialkoxysilane also affect the
magnitude of adhesion. Examples: No 2, 12.5·10-
2 N/mm2 and No 7, 8.5·10-2 N/mm2.
Table 3. Effect of trialkoxysilanes and their structures
on the strength of UV-curing lacquer
N
o
T
ri
al
ko
xy
si
la
ne
C
on
ce
nt
ra
ti
on
o
f t
he
t
ri
al
co
xs
ila
ne
so
lu
ti
on
С
0,
%
N
um
be
r
of
a
pp
lie
d
ad
he
si
ve
la
ye
rs
o
f
th
e
tr
ia
lk
ox
ys
ila
ne
s
ol
ut
io
n
A
dh
es
io
n
N
/m
m
2
M
V
g
/m
ol
а
,
g/
m
2
N
, n
um
be
r
of
s
ila
ne
m
on
ol
ay
er
s
1 0.01 1 0.101 248 0.0006 0.018
2 0.1 1 0.125 248 0.006 0.18
3 1.0 1 0.093 248 0.06 1.87
4 1.0 2 0.094 248 0.12 3.75
5
1.0 3 0.093 248 0.18 5.6
6
H2C=CH-
S:(C2H5O)3
0.1 1 0.086 190 0.006 0.25
7
H2C=CH-
S:(CH3OCH
2CH2O)3
0.1 1 0.085 280 0.006 0.16
8
dynasilane
DAMO
0.1 1 0.087 - 0.006 -
9
- without
silane
- - 0.075 - - -
0,0006 g/m2
0 g/m2
0,006 g/m2
0,06 g/m2 0,12 g/m2 0,18 g/m2
0
0,02
0,04
0,06
0,08
0,1
0,12
0,14
0 0,018 0,18 1,87 3,75 5,6
N
A
d
h
es
io
n
, N
/m
m
2
Fig. 4. Influence of silane quantity on adhesion of UV
varnish on metal surfaces
Anticorrosive properties of coatings depend
on the adhesion to a large extent. Passivation of
the metal surface, inhibition of the anodic reac-
tion, and slowing down the withdrawal of corro-
sion products are achieved with adhesive interac-
tion. If we consider the metal corrosion as an ad-
sorption process of corrosive substances at the
vacant surface sites, it becomes evident that the
greater the adhesion, the fewer of these vacant
sites and, respectively, there is less opportunity
for development of the corrosion process.
High adhesion coating may be a significant
obstacle in the development of corrosion process
due to slow drainage of corrosion products. In
contrast, low adhesion is one of the reasons for
violations of the coating and the appearance of
underfilm corrosion. Therefore, all the factors
which would produce coatings with high and sta-
ble in operation adhesion positively impact on the
ability of protective coatings.
Earlier tests for applying UV-curable lacquer
on the metal with the adhesive layer of trialkox-
ysilane without double bond (glicidoxypropyl-
trimethoxysilane, Dynasilane DAMO) showed no
significant improvement in the protective charac-
teristics of the coating.
REFERENCES
1. Elisavetskiy A.M., Elisavetskaya I.V., Rat-
nikov V.N. Protection of metals against
corrosion by paint and coatings coverings //
Russian Coating J. – 2000. – N 2–3. –
P. 17–27. (in Russian).
2. Drozdova L.A. Developing methods of
regulation of the structure of electrophoretic
compositions and related cataphoretic first
Usage of Silanes when Making Protective Coatings
_____________________________________________________________________________________________
ХФТП 2010. Т. 1. № 3 337
coats: PhD (Techn.) Thesis. – St.-Petersburg,
1997. – 165 p. (in Russian).
3. Babkin O.E, Aleksyuk G.P, Drozdova L.A.
Film-forming materials based on epoxide
resins for cataphoretic coatings // Russian
Coating J. – 1998. – N 1. – P. 8–9. (in
Russian).
4. Babkin O.E., Babkina L.A., Esenovsky A.G.,
Proskuryakov S.V. Regulation of protective-
decorative characteristics of coverings of
UV–curing // Surface Chemistry and
Nanotechnologies: Abstracts Conference. –
St.-Petersburg, 2009. – 245 p. (in Russian).
5. Pakhmutova E.V. Functional additives from
Dow Corning for high-quality coating
materials // Paint and Coatings Industry. −
2008. − N 2. − P. 40−41. (in Russian).
6. Kopylov V.M., Ivanov A.G., Zheneva M.V.,
Shragin D.I. Use of organosilicon functional
additives to paint and coatings materialds //
Paint and Coatings Industry. − 2009. −
N 5−6. − P. 14−19. (in Russian).
7. Kopylov V.M., Ivanov V.V., Kovjazin V.A.
Organosilicon apprets // Glues, Hermetics,
Technologies. − 2004. − N 6. − P. 2−12. (in
Russian).
8. Babkin O.E., Babkina L.A., Esenovsky A.G.,
Proskuryakov S.V. UV – hardening coatings.
Production and curing // The Coatings
Industry: development priorities Int. Res. and
Development Congress: Abstracts. −
Moscow, 2009. − P. 36−37. (in Russian).
Received 18.05.2010, accepted 17.08.2010
Використання силанів при приготуванні захисних покриттів
для металів шляхом УФ-опромінювання
O.С. Айкашева, O.Є. Бабкін, Л.A. Бабкіна, С.В. Проскуряков, A.Г. Єсеновський
ТОВ НВФ "ІНМА",С.-Петербург
Наб. Обводного каналу 118, С.-Петербург 190005, Росія, inmainc@mail.ru
Адгезійна міцність покриттів залежить від природи і щільності адгезійних зв’язків. Показано, що вико-
ристання силанів з олефіновим вуглецем як адгезійного шару на металевих підкладинках істотно поліпшує
захисні властивості та довговічність покриттів, стабілізованих шляхом УФ-опромінювання, завдяки утво-
ренню ковалентних зв’язків Мe–O–Si–C. Силани виявляють оптимальні властивості при утворенні мономо-
лекулярної плівки на поверхні.
Использование силанов при приготовлении защитных покрытий
для металлов путем УФ-облучения
O.С. Айкашева, O.E. Бабкин, Л.A. Бабкина, С.В. Проскуряков, A.Г. Есеновский
ООО НПФ "ИНМА", С.-Петербург
Наб. Обводного канала 118, С.-Петербург 190005, Россия, inmainc@mail.ru
Адгезионная прочность покрытий зависит от природы и плотности адгезионных связей. Показано,
что использование силанов с олефиновым углеродом в качестве адгезионного слоя на металлических под-
ложках существенно улучшает защитные свойства и долговечность покрытий, стабилизированных пу-
тем УФ-облучения, благодаря образованию ковалентных связей Мe–O–Si–C. Силаны обнаруживают опти-
мальные свойства при образовании мономолекулярной пленки на поверхности.
|