Usage of Silanes when Making Protective Coatings for Metal by Uv Curing

Adhesive strength of coatings depends on the nature and density of adhesive bonds. It has been shown that using silanes with olefinic carbon as an adhesive layer on metal substrates lets increase significantly protective effectiveness and life time of UV lacquer coatings due to formation of the Me-О...

Full description

Saved in:
Bibliographic Details
Published in:Хімія, фізика та технологія поверхні
Date:2010
Main Authors: Aykasheva, O.S., Babkin, O.E., Babkina, L.A., Proskuryakov, S.V., Esenovsky, A.G.
Format: Article
Language:English
Published: Інститут хімії поверхні ім. О.О. Чуйка НАН України 2010
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/29003
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Usage of Silanes when Making Protective Coatings for Metal by Uv Curing / O.S. Aykasheva, O.E. Babkin, L.A. Babkina, S.V. Proskuryakov, A.G. Esenovsky // Хімія, фізика та технологія поверхні. — 2010. — Т. 1, № 3. — С. 333-337. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-29003
record_format dspace
spelling Aykasheva, O.S.
Babkin, O.E.
Babkina, L.A.
Proskuryakov, S.V.
Esenovsky, A.G.
2011-11-27T17:53:56Z
2011-11-27T17:53:56Z
2010
Usage of Silanes when Making Protective Coatings for Metal by Uv Curing / O.S. Aykasheva, O.E. Babkin, L.A. Babkina, S.V. Proskuryakov, A.G. Esenovsky // Хімія, фізика та технологія поверхні. — 2010. — Т. 1, № 3. — С. 333-337. — Бібліогр.: 8 назв. — англ.
2079-1704
https://nasplib.isofts.kiev.ua/handle/123456789/29003
661.185
Adhesive strength of coatings depends on the nature and density of adhesive bonds. It has been shown that using silanes with olefinic carbon as an adhesive layer on metal substrates lets increase significantly protective effectiveness and life time of UV lacquer coatings due to formation of the Me-О-Si-C covalent bonds. Silanes show optimum properties when unimolecular film is formed on the surface.
Адгезійна міцність покриттів залежить від природи і щільності адгезійних зв’язків. Показано, що використання силанів з олефіновим вуглецем як адгезійного шару на металевих підкладинках істотно поліпшує захисні властивості та довговічність покриттів, стабілізованих шляхом УФ-опромінювання, завдяки утворенню ковалентних зв’язків Мe–O–Si–C. Силани виявляють оптимальні властивості при утворенні мономолекулярної плівки на поверхні.
Адгезионная прочность покрытий зависит от природы и плотности адгезионных связей. Показано, что использование силанов с олефиновым углеродом в качестве адгезионного слоя на металлических подложках существенно улучшает защитные свойства и долговечность покрытий, стабилизированных путем УФ-облучения, благодаря образованию ковалентных связей Мe–O–Si–C. Силаны обнаруживают оптимальные свойства при образовании мономолекулярной пленки на поверхности.
en
Інститут хімії поверхні ім. О.О. Чуйка НАН України
Хімія, фізика та технологія поверхні
Неорганічні та вуглецеві наноматеріали і наносистеми
Usage of Silanes when Making Protective Coatings for Metal by Uv Curing
Використання силанів при приготуванні захисних покриттів для металів шляхом УФ-опромінювання
Использование силанов при приготовлении защитных покрытий для металлов путем УФ-облучения
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Usage of Silanes when Making Protective Coatings for Metal by Uv Curing
spellingShingle Usage of Silanes when Making Protective Coatings for Metal by Uv Curing
Aykasheva, O.S.
Babkin, O.E.
Babkina, L.A.
Proskuryakov, S.V.
Esenovsky, A.G.
Неорганічні та вуглецеві наноматеріали і наносистеми
title_short Usage of Silanes when Making Protective Coatings for Metal by Uv Curing
title_full Usage of Silanes when Making Protective Coatings for Metal by Uv Curing
title_fullStr Usage of Silanes when Making Protective Coatings for Metal by Uv Curing
title_full_unstemmed Usage of Silanes when Making Protective Coatings for Metal by Uv Curing
title_sort usage of silanes when making protective coatings for metal by uv curing
author Aykasheva, O.S.
Babkin, O.E.
Babkina, L.A.
Proskuryakov, S.V.
Esenovsky, A.G.
author_facet Aykasheva, O.S.
Babkin, O.E.
Babkina, L.A.
Proskuryakov, S.V.
Esenovsky, A.G.
topic Неорганічні та вуглецеві наноматеріали і наносистеми
topic_facet Неорганічні та вуглецеві наноматеріали і наносистеми
publishDate 2010
language English
container_title Хімія, фізика та технологія поверхні
publisher Інститут хімії поверхні ім. О.О. Чуйка НАН України
format Article
title_alt Використання силанів при приготуванні захисних покриттів для металів шляхом УФ-опромінювання
Использование силанов при приготовлении защитных покрытий для металлов путем УФ-облучения
description Adhesive strength of coatings depends on the nature and density of adhesive bonds. It has been shown that using silanes with olefinic carbon as an adhesive layer on metal substrates lets increase significantly protective effectiveness and life time of UV lacquer coatings due to formation of the Me-О-Si-C covalent bonds. Silanes show optimum properties when unimolecular film is formed on the surface. Адгезійна міцність покриттів залежить від природи і щільності адгезійних зв’язків. Показано, що використання силанів з олефіновим вуглецем як адгезійного шару на металевих підкладинках істотно поліпшує захисні властивості та довговічність покриттів, стабілізованих шляхом УФ-опромінювання, завдяки утворенню ковалентних зв’язків Мe–O–Si–C. Силани виявляють оптимальні властивості при утворенні мономолекулярної плівки на поверхні. Адгезионная прочность покрытий зависит от природы и плотности адгезионных связей. Показано, что использование силанов с олефиновым углеродом в качестве адгезионного слоя на металлических подложках существенно улучшает защитные свойства и долговечность покрытий, стабилизированных путем УФ-облучения, благодаря образованию ковалентных связей Мe–O–Si–C. Силаны обнаруживают оптимальные свойства при образовании мономолекулярной пленки на поверхности.
issn 2079-1704
url https://nasplib.isofts.kiev.ua/handle/123456789/29003
citation_txt Usage of Silanes when Making Protective Coatings for Metal by Uv Curing / O.S. Aykasheva, O.E. Babkin, L.A. Babkina, S.V. Proskuryakov, A.G. Esenovsky // Хімія, фізика та технологія поверхні. — 2010. — Т. 1, № 3. — С. 333-337. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT aykashevaos usageofsilaneswhenmakingprotectivecoatingsformetalbyuvcuring
AT babkinoe usageofsilaneswhenmakingprotectivecoatingsformetalbyuvcuring
AT babkinala usageofsilaneswhenmakingprotectivecoatingsformetalbyuvcuring
AT proskuryakovsv usageofsilaneswhenmakingprotectivecoatingsformetalbyuvcuring
AT esenovskyag usageofsilaneswhenmakingprotectivecoatingsformetalbyuvcuring
AT aykashevaos vikoristannâsilanívpriprigotuvannízahisnihpokrittívdlâmetalívšlâhomufopromínûvannâ
AT babkinoe vikoristannâsilanívpriprigotuvannízahisnihpokrittívdlâmetalívšlâhomufopromínûvannâ
AT babkinala vikoristannâsilanívpriprigotuvannízahisnihpokrittívdlâmetalívšlâhomufopromínûvannâ
AT proskuryakovsv vikoristannâsilanívpriprigotuvannízahisnihpokrittívdlâmetalívšlâhomufopromínûvannâ
AT esenovskyag vikoristannâsilanívpriprigotuvannízahisnihpokrittívdlâmetalívšlâhomufopromínûvannâ
AT aykashevaos ispolʹzovaniesilanovpriprigotovleniizaŝitnyhpokrytiidlâmetallovputemufoblučeniâ
AT babkinoe ispolʹzovaniesilanovpriprigotovleniizaŝitnyhpokrytiidlâmetallovputemufoblučeniâ
AT babkinala ispolʹzovaniesilanovpriprigotovleniizaŝitnyhpokrytiidlâmetallovputemufoblučeniâ
AT proskuryakovsv ispolʹzovaniesilanovpriprigotovleniizaŝitnyhpokrytiidlâmetallovputemufoblučeniâ
AT esenovskyag ispolʹzovaniesilanovpriprigotovleniizaŝitnyhpokrytiidlâmetallovputemufoblučeniâ
first_indexed 2025-11-26T17:16:47Z
last_indexed 2025-11-26T17:16:47Z
_version_ 1850764048906321920
fulltext Хімія, фізика та технологія поверхні. 2010. Т. 1. № 3. С. 333–337 _____________________________________________________________________________________________ ХФТП 2010. Т. 1. № 3 333 UDC 661.185 USAGE OF SILANES WHEN MAKING PROTECTIVE COATINGS FOR METAL BY UV CURING O.S. Aykasheva, O.E. Babkin, L.A. Babkina, S.V. Proskuryakov, A.G. Esenovsky Research & Development Company "INMA" Co.Ltd 118 Nab. Obvodnogo kanala, St.-Petersburg 190005, Russia, inmainc@mail.ru Adhesive strength of coatings depends on the nature and density of adhesive bonds. It has been shown that using silanes with olefinic carbon as an adhesive layer on metal substrates lets increase significantly protective effectiveness and life time of UV lacquer coatings due to formation of the Me-О-Si-C covalent bonds. Silanes show optimum properties when unimolecular film is formed on the surface. Reducing the thickness of the paint coating to the persistence of high security features is one of the major trends in the paint industry. Important role in this spectrum is the method to paint the material. In [1] data are presented on the conservation of protective coating characteris- tics as dependent on the application method. Application methods for decreasing production of protective coating characteristics are as follows: electrostatic spraying, air spraying, airless spraying, inkjet poured, dipping, and brush. This difference is explained by the different structure of the coating formation with the density of its packing and size. These relationships are of particular urgency when high anticorrosive properties are required at the film thickness of about 20 microns. In particu- lar, anaphoretic coating allows for such a thick- ness to withstand the salt fog chamber for 250 to 500 hours, electrophoresis for 1000 hours or more [2]. Lower molecular weight oligomer in catapho- retic arrangement leads to an increase in the pro- tective coating behavior [3]. Method of curing UV radiation received indus- trial development in the late 60-ies and is now con- sidered to be one of the most promising. The advan- tages of this method are: relatively high perform- ance, low energy costs, simple equipment. How- ever, curing by UV radiation is applicable to a lim- ited number of paints and varnishes. It is used mainly for obtaining coatings of materials capable of cured through polymerization reaction. The prin- ciple of cure is based on the ability of UV rays to initiate the polymerization of these oligomeric mate- rials. The energy of UV radiation is high – 12.3 eV which is 2–4 times higher than the rays energy of visible light. This allows the solidification of coat- ings with a satisfactory rate at normal temperature. The process of polymerization can be divided into stages of initiation, development, and comple- tion. The initiation stage begins the process of formation of reactive particles (free radicals). Dur- ing the irradiation of UV light, reactive radicals are formed by chemical decomposition of photoinitia- tor. The collapse of photoinitiator leads to the for- mation of free radicals which react with carbon- carbon double bonds of a film maker. As they are highly reactive and rapidly solidified, there may be high internal stresses that can lead to problems with adhesion to some substrates, in particular, on the metal. The molecular weight of film-forming coatings for UV-curing is of 500 to 2500 g/mol [4]. Adhesion strength of coatings depends on the na- ture and density of adhesive bonds. Bonds of different nature may occur dissimilar bodies: chemical (ionic, covalent, coordination) with energies from 65 to 1000 kJ/mol, hydrogen and van der Waals type (induc- tion, dispersion, dipole, etc.), with energy not exceeding 50 kJ/mol in most cases. When coating, an interaction with the substrate occurs at the time of contact with the liquid paint material. However, the adhesion values of liquid paint and of finished with solid coating are usu- ally not equal. When forming the coating, as well as during its operation, originally formed bonds can be stored, destroyed, or supplemented by new bonds. The junction of two dissimilar materials – adhe- sives and substratum – perhaps is due to a spectrum of the molecular forces – attraction, repulsion, dis- persion interaction. The result of this interaction is the adsorption of adhesive on the substrate surface. Depending on the operating forces, adsorption can be physical or chemical in nature. Formed during this interim at the interface or boundary layer, the polymer material has the structure and properties different from those of bulk polymer. These differ- O.S. Aykasheva, O.E. Babkin, L.A. Babkina et al. _____________________________________________________________________________________________ 334 ХФТП 2010. Т. 1. № 3 ences in properties are the result of restrictions of molecular mobility in the adsorption layers. The composition and structure of boundary layers exert a decisive influence on the magnitude of interfacial interaction and, accordingly, the adhesion of poly- mers to solid surfaces. The increase in adhesive strength, according to the adsorption theory, is caused by changing the chemical nature of the polymer and increasing the po- larity of the substrate, for example, through oxidation. When using a binder having active functional groups, a chemisorption interaction can occur. Thus, the interaction of components of polyurethane for- mulations with metal oxides and hydroxides takes place at ambient temperature in the reaction: R–N=C=O+MeOH→R–NH–COOMe. The adhesion strength is a multivariate index dependent on the nature of polymer and substrate as well as the formation conditions of coverage. The coverage of monomeric and/or oligomeric binder converted into a polymer (three- dimensional) state directly on the substrate has the highest adhesion. Monomers and oligomers in some cases can be chemisorbed on the surface of metals; their subsequent polymerization or poly- condensation leads to the formation of grafted polymers chemically bound to the metal. The role of substrate in the adhesive interac- tion is as significant as that of the film material. The greatest difficulty is getting the adhesion- resistant coatings on smooth non-porous sub- strates (metals, glass) as well as on materials with low surface energy. Currently, the leading foreign firms engaged in the development and manufacture of chemical means of surface preparation conduct extensive research and pilot projects to replace the highly toxic chromate reagents with processing composi- tions based on silanes [5, 6]. This provides a pro- tection against corrosion due to the good barrier properties of silane films formed on the surface with a thickness of 4 to 20 nm which allows us to assign these strata to nanocoatings, and technolo- gies of such a treatment – to nanotechnologies. Trialkoxysilanes are environmentally friendly organometallic compounds produced at an indus- trial scale. They have a general formula R'(CH2)nSi(OR)3 where R' is organo-functional group and OR is hydrolysed alkoxy-group: meth- oxy- (OCH3), ethoxy- (OC2H5) or acetoxy- (OCOCH3). Their structures are shown in Fig. 1. Fig. 1. Trialkoxysilane structures Trialkoxysilanes used to form a protective coating on the metal surface should be hydro- lyzed to form hydroxyl groups. It is an interaction of these hydroxyl groups with metal hydroxides present on metal surface resulting in bonding si- lanes with metal surface. Hydrolysis of an ex- posed alkoxy group (OR) in presence of water results in the formation of silanol group (SiOH). Hydrolysis usually occurs in dilute solutions of silanes as follows R–Si(OR)(OH)2 + H2O ↔ R'Si(OH)3 + ROH. As a result of hydrolysis, silane-triplets are formed. Mortar trialkoxysilanes become efficient due to achieving an effective concentration of si- lane-triplets. For the processing of inorganic sur- faces, solutions of organo-alkoxy silanes are used in water or organic solvents, aerosols mixed with low-boiling solvents. When using aqueous solu- tions, a 0.1 to 0.5% solution is prepared and rap- idly applied to the surface of material. To improve the condensing, surface is dried. During the subse- quent hot drying of metal surfaces treated with aqueous solutions of silanes, two condensation reactions occur: one is between silanol groups of soluted trialkoxysilane and hydroxides of metal substrate resulted in the formation of covalent bonds (MeOSi) (Fig. 2). Another one occurs be- tween silanol groups to form links SiOSi. As a result of such treatment, poly-organo- siloxanes containing carbonyl functional groups are formed on the surface of inorganic materials chemically bound to it. The consumption of silanes depends on the surface area of the material treated, the content of hydroxyl groups on the surface, and the sizes of molecules of the adhesion promoter. Usage of Silanes when Making Protective Coatings _____________________________________________________________________________________________ ХФТП 2010. Т. 1. № 3 335 Fig. 2. Scheme of the formation of a covalent link Si–O–Me Optimal properties of silanes appear in the formation of a monomolecular layer on the sur- face. In [7] calculations are made of the maxi- mum consumption rates of some trialkoxysilanes а0 (g/m2) needed for a monomolecular layer on the surface of the material (Table 1). Table 1. Trialkoxysilanes with a double bond - adhe- sion promoters No Chemical type Structure Manufac- turer а0, g/m2 1 vinyltri- methoxy- silane (CH3O)3SiCH=CH2 Momen- tive, Wacker 1.9× 10-2 2 vinyltri- ethoxy- silane (C2H5O)3SiCH=CH2 Momen- tive, Wacker 2.4× 10-2 3 vinyltri- acetoxy- silane (CH3CO2)3SiCH=CH2 Wacker 3.0× 10-2 4 vinyl- methyldi- methoxy- silane (CH3O)2CH3SiCH=CH2 Wacker 5 3- metacryl- oxypropyl- tri- methoxy- silane Dow Corning Evonik 3.2× 10-2 6 vinyltri(2- methoxy- ethoxy) silane (CH3OCH2CH2O)3SiCH =CH2 Momen- tive, Wacker 3.6× 10-2 If the interaction occurs only with surface hydroxyl groups, the flow rate may be signifi- cantly lower. In practice, organo-alkoxy-silanes are used in quantities much larger than necessary for the formation of a monolayer. However, in this case a layered structure is formed. The presence of a double bond in the organo- functional group Y (Fig. 1) allows the adhesive layer to participate in the polymerization reaction of UV curing systems. Table 1 shows the trialkoxysilanes forming adhesive monolayers on the surface of substrate. Standard thin-plate cold-rolled steel grade 08ps 0.8 mm thick were used as objects under study stained with a pneumatic spray UV cur- able lacquer (see recipe in Table 2), and cures for installing an ORK-21M1 with a mercury lamp DRT [8]. Figure 3 shows photographs of plates during the test (0 hours, 50 hours, 72 hours) in the salt fog chamber (thickness of the film is of 25–35 microns), treated trialkox- ysilane No 15.10.3 and without treatment No 15.10.6. (GOST 20.57.406-81 method 215-3). Table 2. Formulations of UV varnish caused by air- spraying No Component and its characteristics Application Mass fraction 1 epoxy-acrylate MV 550, functionality 2 UV-film formation 40 2 dipropylene glycol- diacryrilate active thinner, regulation viscosity 20 3 1- hydroxycyclo- hexylfenilketone photoinitiator 3 4 2, 4, 6-trimethyl- benzoyldiphenyl phosphineoxide photoinitiator 1 5 isobornil-acrylate active thinner, regulation viscosity 36 Fig. 3. Samples in the salt fog chamber O.S. Aykasheva, O.E. Babkin, L.A. Babkina et al. _____________________________________________________________________________________________ 336 ХФТП 2010. Т. 1. № 3 Photos plates demonstrate a significant in- crease in the protective characteristics of UV cured coatings by increasing the adhesion due to formation of covalent bonds Me–O–Si–C. Table 3 shows the results of measurements of coating adhesion to the substrate (ISO 4624) de- pending on the number of trialkoxysilane per sur- face area (g/m2). Fig. 4 shows the variation of adhesion as dependent on the number of layers of trialkoxysilane (N) on the surface. Using of tri- alkoxysilanes improves adhesion of lacquer UV curing to the steel plate with 7.5·10-2 N/mm2 (No 9) up to 9.3 N/mm2 (No 3). Maximum amount adhesion observed in coatings, the quan- tity of trialkoxysilane on the surface protected does not exceed a monolayer. Non-hydrolysed organo-functional groups with a double bond trialkoxysilane also affect the magnitude of adhesion. Examples: No 2, 12.5·10- 2 N/mm2 and No 7, 8.5·10-2 N/mm2. Table 3. Effect of trialkoxysilanes and their structures on the strength of UV-curing lacquer N o T ri al ko xy si la ne C on ce nt ra ti on o f t he t ri al co xs ila ne so lu ti on С 0, % N um be r of a pp lie d ad he si ve la ye rs o f th e tr ia lk ox ys ila ne s ol ut io n A dh es io n N /m m 2 M V g /m ol а , g/ m 2 N , n um be r of s ila ne m on ol ay er s 1 0.01 1 0.101 248 0.0006 0.018 2 0.1 1 0.125 248 0.006 0.18 3 1.0 1 0.093 248 0.06 1.87 4 1.0 2 0.094 248 0.12 3.75 5 1.0 3 0.093 248 0.18 5.6 6 H2C=CH- S:(C2H5O)3 0.1 1 0.086 190 0.006 0.25 7 H2C=CH- S:(CH3OCH 2CH2O)3 0.1 1 0.085 280 0.006 0.16 8 dynasilane DAMO 0.1 1 0.087 - 0.006 - 9 - without silane - - 0.075 - - - 0,0006 g/m2 0 g/m2 0,006 g/m2 0,06 g/m2 0,12 g/m2 0,18 g/m2 0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0 0,018 0,18 1,87 3,75 5,6 N A d h es io n , N /m m 2 Fig. 4. Influence of silane quantity on adhesion of UV varnish on metal surfaces Anticorrosive properties of coatings depend on the adhesion to a large extent. Passivation of the metal surface, inhibition of the anodic reac- tion, and slowing down the withdrawal of corro- sion products are achieved with adhesive interac- tion. If we consider the metal corrosion as an ad- sorption process of corrosive substances at the vacant surface sites, it becomes evident that the greater the adhesion, the fewer of these vacant sites and, respectively, there is less opportunity for development of the corrosion process. High adhesion coating may be a significant obstacle in the development of corrosion process due to slow drainage of corrosion products. In contrast, low adhesion is one of the reasons for violations of the coating and the appearance of underfilm corrosion. Therefore, all the factors which would produce coatings with high and sta- ble in operation adhesion positively impact on the ability of protective coatings. Earlier tests for applying UV-curable lacquer on the metal with the adhesive layer of trialkox- ysilane without double bond (glicidoxypropyl- trimethoxysilane, Dynasilane DAMO) showed no significant improvement in the protective charac- teristics of the coating. REFERENCES 1. Elisavetskiy A.M., Elisavetskaya I.V., Rat- nikov V.N. Protection of metals against corrosion by paint and coatings coverings // Russian Coating J. – 2000. – N 2–3. – P. 17–27. (in Russian). 2. Drozdova L.A. Developing methods of regulation of the structure of electrophoretic compositions and related cataphoretic first Usage of Silanes when Making Protective Coatings _____________________________________________________________________________________________ ХФТП 2010. Т. 1. № 3 337 coats: PhD (Techn.) Thesis. – St.-Petersburg, 1997. – 165 p. (in Russian). 3. Babkin O.E, Aleksyuk G.P, Drozdova L.A. Film-forming materials based on epoxide resins for cataphoretic coatings // Russian Coating J. – 1998. – N 1. – P. 8–9. (in Russian). 4. Babkin O.E., Babkina L.A., Esenovsky A.G., Proskuryakov S.V. Regulation of protective- decorative characteristics of coverings of UV–curing // Surface Chemistry and Nanotechnologies: Abstracts Conference. – St.-Petersburg, 2009. – 245 p. (in Russian). 5. Pakhmutova E.V. Functional additives from Dow Corning for high-quality coating materials // Paint and Coatings Industry. − 2008. − N 2. − P. 40−41. (in Russian). 6. Kopylov V.M., Ivanov A.G., Zheneva M.V., Shragin D.I. Use of organosilicon functional additives to paint and coatings materialds // Paint and Coatings Industry. − 2009. − N 5−6. − P. 14−19. (in Russian). 7. Kopylov V.M., Ivanov V.V., Kovjazin V.A. Organosilicon apprets // Glues, Hermetics, Technologies. − 2004. − N 6. − P. 2−12. (in Russian). 8. Babkin O.E., Babkina L.A., Esenovsky A.G., Proskuryakov S.V. UV – hardening coatings. Production and curing // The Coatings Industry: development priorities Int. Res. and Development Congress: Abstracts. − Moscow, 2009. − P. 36−37. (in Russian). Received 18.05.2010, accepted 17.08.2010 Використання силанів при приготуванні захисних покриттів для металів шляхом УФ-опромінювання O.С. Айкашева, O.Є. Бабкін, Л.A. Бабкіна, С.В. Проскуряков, A.Г. Єсеновський ТОВ НВФ "ІНМА",С.-Петербург Наб. Обводного каналу 118, С.-Петербург 190005, Росія, inmainc@mail.ru Адгезійна міцність покриттів залежить від природи і щільності адгезійних зв’язків. Показано, що вико- ристання силанів з олефіновим вуглецем як адгезійного шару на металевих підкладинках істотно поліпшує захисні властивості та довговічність покриттів, стабілізованих шляхом УФ-опромінювання, завдяки утво- ренню ковалентних зв’язків Мe–O–Si–C. Силани виявляють оптимальні властивості при утворенні мономо- лекулярної плівки на поверхні. Использование силанов при приготовлении защитных покрытий для металлов путем УФ-облучения O.С. Айкашева, O.E. Бабкин, Л.A. Бабкина, С.В. Проскуряков, A.Г. Есеновский ООО НПФ "ИНМА", С.-Петербург Наб. Обводного канала 118, С.-Петербург 190005, Россия, inmainc@mail.ru Адгезионная прочность покрытий зависит от природы и плотности адгезионных связей. Показано, что использование силанов с олефиновым углеродом в качестве адгезионного слоя на металлических под- ложках существенно улучшает защитные свойства и долговечность покрытий, стабилизированных пу- тем УФ-облучения, благодаря образованию ковалентных связей Мe–O–Si–C. Силаны обнаруживают опти- мальные свойства при образовании мономолекулярной пленки на поверхности.