Осцилляционные свойства решений задачи Штурма–Лиувилля с сингулярным коэффициентом

Дослiджено осциляцiйнi властивостi нетривiальних розв’язкiв рiвняння Штурма–Лiувiлля iз сингулярним дiйсним коефiцiєнтом з негативного простору Соболєва W2^−1 [a, b]. Знайдено аналоги класичних теорем Штурма про чергування, порiвняння та осциляцiю. Встановлено, що число вiд’ємних власних значень кр...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Доповіді НАН України
Дата:2010
Автори: Михайлец, В.А., Молибога, В.Н.
Формат: Стаття
Мова:Russian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2010
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/30007
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Осцилляционные свойства решений задачи Штурма–Лиувилля с сингулярным коэффициентом / В.А. Михайлец, В.Н. Молибога // Доп. НАН України. — 2010. — № 8. — С. 20-24. — Бібліогр.: 8 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Дослiджено осциляцiйнi властивостi нетривiальних розв’язкiв рiвняння Штурма–Лiувiлля iз сингулярним дiйсним коефiцiєнтом з негативного простору Соболєва W2^−1 [a, b]. Знайдено аналоги класичних теорем Штурма про чергування, порiвняння та осциляцiю. Встановлено, що число вiд’ємних власних значень крайової задачi Дiрiхле дорiвнює числу нулiв у iнтервалi (a, b) нетривiального розв’язку y(x) однорiдного рiвняння з умовою y(a) = 0. We study oscillation properties of non-trivial solutions of the Sturm–Liouville equation with a singular real-valued coefficient from the negative Sobolev space W2^−1 [a, b]. Analogs of the classical Sturm theorems about interlacing, comparison, and oscillation are found. The number of negative eigenvalues of the Dirichlet boundary-value problem is found equal to the number of zeros in the interval (a, b) of a non-trivial solution y(x) of the homogeneous equation with the condition y(a) = 0.
ISSN:1025-6415