Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations

The radiation stability of periclase MgO, rutile TiO2, zircon ZrSiO4, xenotime YPO4, quartz SiO2, cristobalite SiO2, gallium phosphate GaPO4 and fluorapatite Ca10(PO4)6F2 has been studied by computer simulations methods. The number of Frenkel pairs after propagation of the primary knock-оn atom of t...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Мінералогічний журнал
Дата:2009
Автори: Grechanovsky, A.E., Brik, A.B., Ponomarenko, O.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут геохімії, мінералогії та рудоутворення ім. М.П. Семененка НАН України 2009
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/30917
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations / А.E. Grechanovsky, A.B. Brik, O.M. Ponomarenko // Мінералогічний журнал. — 2009. — Т. 31, № 4. — С. 30-37. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-30917
record_format dspace
spelling Grechanovsky, A.E.
Brik, A.B.
Ponomarenko, O.M.
2012-02-17T14:27:46Z
2012-02-17T14:27:46Z
2009
Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations / А.E. Grechanovsky, A.B. Brik, O.M. Ponomarenko // Мінералогічний журнал. — 2009. — Т. 31, № 4. — С. 30-37. — Бібліогр.: 20 назв. — англ.
0204-3548
https://nasplib.isofts.kiev.ua/handle/123456789/30917
544.163.2 : 544.228
The radiation stability of periclase MgO, rutile TiO2, zircon ZrSiO4, xenotime YPO4, quartz SiO2, cristobalite SiO2, gallium phosphate GaPO4 and fluorapatite Ca10(PO4)6F2 has been studied by computer simulations methods. The number of Frenkel pairs after propagation of the primary knock-оn atom of thorium with a kinetic energy of 10 keV has been characterized by molecular dynamics method. Calculation of chemical bonds covalency degree in studied minerals has been performed using the self-consistent SIESTA method, an implementation of the density functional theory. Calculation of the effective charge of oxygen atoms has been performed using ab initio Hartree-Fock method and B3LYP hybrid functional. It is established that the radiation stability of these minerals depends significantly on the structure topology (the connectivity index, the number of different polyhedra, connected in oxygen positions and the number of nonequivalent positions of oxygen atoms and cations in a structure). Besides, the radiation stability of silicates and metal oxides can be mainly characterized by the effective charge of oxygen atoms. It has been shown, that bulk modulus also influences on radiation stability of silicates with related structures.
Радіаційна стійкість мінералів периклазу MgO, рутилу TiO2, циркону ZrSiO4, ксенотиму YPO4, кварцу SiO2, кристобаліту SiO2, фосфату галію GaPO4 та фторапатиту Ca10(PO4)6F2 досліджена за допомогою методів комп’ютерного моделювання. Кількість пар Френкеля, які формуються в структурі мінералу після проходження первинно вибитого атому торію з енергією 10 кеВ, розраховано за допомогою методу молекулярної динаміки. За методом SIESTA (теорія функціонала густини) проведені обчислення ступеня ковалентності хімічних зв’язків для цих мінералів. Обчислення ефективних зарядів атомів кисню проведені з використанням неемпіричного методу Хартрі-Фока та гібридного функціонала B3LYP. Встановлено, що радіаційна стійкість досліджених мінералів значною мірою залежить від топології структури (зв’язність структури, кількість різних поліедрів, що з’єднуються в позиціях атомів кисню, кількість нееквівалентних позицій атомів кисню та катіонів). Окрім того, радіаційна стійкість силікатів та оксидів металів значною мірою залежить від значень ефективних зарядів атомів кисню. Показано, що модуль об’ємної пружності мінералів також є важливим параметром, що впливає на радіаційну стійкість мінералів з однотипними структурами.
Радиационная устойчивость таких минералов, как периклаз MgO, рутил TiO2, циркон ZrSiO4, ксенотим YPO4, кварц SiO2, кристобалит SiO2, фосфат галлия GaPO4 и фторапатит Ca10(PO4)6F2 изучена с помощью методов компьютерного моделирования. Количество пар Френкеля, которые формируются в структуре минерала после прохождения первично выбитого атома тория с энергией 10 кэВ, рассчитано с помощью метода молекулярной динамики. По методу SIESTA (теория функционала плотности) проведены вычисления степени ковалентности химических связей для этих веществ. Неэмпирические расчеты методом Хартри-Фока с применением гибридного функционала B3LYP были выполнены для вычисления эффективных зарядов атомов кислорода в минералах. Установлено, что радиационная устойчивость исследованных минералов в значительной степени зависит от топологии структуры (связность структуры, количество различных полиэдров, которые соединяются в позициях атомов кислорода, количество неэквивалентных позиций атомов кислорода и катионов). Кроме того, радиационная устойчивость силикатов и оксидов металлов в значительной степени зависит от значений эффективных зарядов атомов кислорода. Показано, что модуль объемной упругости также служит важным параметром, влияющим на радиационную устойчивость минералов с однотипными структурами.
en
Інститут геохімії, мінералогії та рудоутворення ім. М.П. Семененка НАН України
Мінералогічний журнал
Мінералогія
Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations
spellingShingle Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations
Grechanovsky, A.E.
Brik, A.B.
Ponomarenko, O.M.
Мінералогія
title_short Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations
title_full Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations
title_fullStr Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations
title_full_unstemmed Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations
title_sort influence of structure, character of chemical bonding and elastic properties on the radiation stability of silicates, phosphates and metal oxides deduced by computer simulations
author Grechanovsky, A.E.
Brik, A.B.
Ponomarenko, O.M.
author_facet Grechanovsky, A.E.
Brik, A.B.
Ponomarenko, O.M.
topic Мінералогія
topic_facet Мінералогія
publishDate 2009
language English
container_title Мінералогічний журнал
publisher Інститут геохімії, мінералогії та рудоутворення ім. М.П. Семененка НАН України
format Article
description The radiation stability of periclase MgO, rutile TiO2, zircon ZrSiO4, xenotime YPO4, quartz SiO2, cristobalite SiO2, gallium phosphate GaPO4 and fluorapatite Ca10(PO4)6F2 has been studied by computer simulations methods. The number of Frenkel pairs after propagation of the primary knock-оn atom of thorium with a kinetic energy of 10 keV has been characterized by molecular dynamics method. Calculation of chemical bonds covalency degree in studied minerals has been performed using the self-consistent SIESTA method, an implementation of the density functional theory. Calculation of the effective charge of oxygen atoms has been performed using ab initio Hartree-Fock method and B3LYP hybrid functional. It is established that the radiation stability of these minerals depends significantly on the structure topology (the connectivity index, the number of different polyhedra, connected in oxygen positions and the number of nonequivalent positions of oxygen atoms and cations in a structure). Besides, the radiation stability of silicates and metal oxides can be mainly characterized by the effective charge of oxygen atoms. It has been shown, that bulk modulus also influences on radiation stability of silicates with related structures. Радіаційна стійкість мінералів периклазу MgO, рутилу TiO2, циркону ZrSiO4, ксенотиму YPO4, кварцу SiO2, кристобаліту SiO2, фосфату галію GaPO4 та фторапатиту Ca10(PO4)6F2 досліджена за допомогою методів комп’ютерного моделювання. Кількість пар Френкеля, які формуються в структурі мінералу після проходження первинно вибитого атому торію з енергією 10 кеВ, розраховано за допомогою методу молекулярної динаміки. За методом SIESTA (теорія функціонала густини) проведені обчислення ступеня ковалентності хімічних зв’язків для цих мінералів. Обчислення ефективних зарядів атомів кисню проведені з використанням неемпіричного методу Хартрі-Фока та гібридного функціонала B3LYP. Встановлено, що радіаційна стійкість досліджених мінералів значною мірою залежить від топології структури (зв’язність структури, кількість різних поліедрів, що з’єднуються в позиціях атомів кисню, кількість нееквівалентних позицій атомів кисню та катіонів). Окрім того, радіаційна стійкість силікатів та оксидів металів значною мірою залежить від значень ефективних зарядів атомів кисню. Показано, що модуль об’ємної пружності мінералів також є важливим параметром, що впливає на радіаційну стійкість мінералів з однотипними структурами. Радиационная устойчивость таких минералов, как периклаз MgO, рутил TiO2, циркон ZrSiO4, ксенотим YPO4, кварц SiO2, кристобалит SiO2, фосфат галлия GaPO4 и фторапатит Ca10(PO4)6F2 изучена с помощью методов компьютерного моделирования. Количество пар Френкеля, которые формируются в структуре минерала после прохождения первично выбитого атома тория с энергией 10 кэВ, рассчитано с помощью метода молекулярной динамики. По методу SIESTA (теория функционала плотности) проведены вычисления степени ковалентности химических связей для этих веществ. Неэмпирические расчеты методом Хартри-Фока с применением гибридного функционала B3LYP были выполнены для вычисления эффективных зарядов атомов кислорода в минералах. Установлено, что радиационная устойчивость исследованных минералов в значительной степени зависит от топологии структуры (связность структуры, количество различных полиэдров, которые соединяются в позициях атомов кислорода, количество неэквивалентных позиций атомов кислорода и катионов). Кроме того, радиационная устойчивость силикатов и оксидов металлов в значительной степени зависит от значений эффективных зарядов атомов кислорода. Показано, что модуль объемной упругости также служит важным параметром, влияющим на радиационную устойчивость минералов с однотипными структурами.
issn 0204-3548
url https://nasplib.isofts.kiev.ua/handle/123456789/30917
citation_txt Influence of Structure, Character of Chemical Bonding and Elastic Properties on the Radiation Stability of Silicates, Phosphates and Metal Oxides Deduced by Computer Simulations / А.E. Grechanovsky, A.B. Brik, O.M. Ponomarenko // Мінералогічний журнал. — 2009. — Т. 31, № 4. — С. 30-37. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT grechanovskyae influenceofstructurecharacterofchemicalbondingandelasticpropertiesontheradiationstabilityofsilicatesphosphatesandmetaloxidesdeducedbycomputersimulations
AT brikab influenceofstructurecharacterofchemicalbondingandelasticpropertiesontheradiationstabilityofsilicatesphosphatesandmetaloxidesdeducedbycomputersimulations
AT ponomarenkoom influenceofstructurecharacterofchemicalbondingandelasticpropertiesontheradiationstabilityofsilicatesphosphatesandmetaloxidesdeducedbycomputersimulations
first_indexed 2025-11-25T21:10:29Z
last_indexed 2025-11-25T21:10:29Z
_version_ 1850552231244333056
fulltext 30 ISSN 0204�3548. Mineral. Journ. (Ukraine). 2009. 31, No 4 UDК 544.163.2 : 544.228 А.E. Grechanovsky, A.B. Brik, O.M. Ponomarenko INFLUENCE OF STRUCTURE, CHARACTER OF CHEMICAL BONDING AND ELASTIC PROPERTIES ON THE RADIATION STABILITY OF SILICATES, PHOSPHATES AND METAL OXIDES DEDUCED BY COMPUTER SIMULATIONS The radiation stability of periclase MgO, rutile TiO2, zircon ZrSiO4, xenotime YPO4, quartz SiO2, cristobalite SiO2, galli; um phosphate GaPO4 and fluorapatite Ca10(PO4)6F2 has been studied by computer simulations methods. The number of Frenkel pairs after propagation of the primary knock;оn atom of thorium with a kinetic energy of 10 keV has been cha; racterized by molecular dynamics method. Calculation of chemical bonds covalency degree in studied minerals has been performed using the self;consistent SIESTA method, an implementation of the density functional theory. Calculation of the effective charge of oxygen atoms has been performed using ab initio Hartree;Fock method and B3LYP hybrid functio; nal. It is established that the radiation stability of these minerals depends significantly on the structure topology (the connectivity index, the number of different polyhedra, connected in oxygen positions and the number of nonequivalent positions of oxygen atoms and cations in a structure). Besides, the radiation stability of silicates and metal oxides can be mainly characterized by the effective charge of oxygen atoms. It has been shown, that bulk modulus also influences on radiation stability of silicates with related structures. E;mail: grechanovsky@igmof.gov.ua МІНЕРАЛОГІЧНИЙ ЖУРНАЛ MINERALOGICAL JOURNAL (UKRAINE) Introduction. Nuclear power production was increased in some countries (including Ukraine) in the last decades. The "Strategy of the nuclear power industry development" [20] assumes that the nuclear power plant share in the total national power generation reached in 2005 will be main; tained on the same level during the period of 2006 to 2030 (this is about a half of the total annual electric power generation in Ukraine). On the basis of the preliminary estimation of electric power generation increasing in 2.2 times during this period it has been offered both extension of the service life of existing and construction of new facilities at the nuclear power plants. Therefore for stable and progressively development of the nuclear power engineering a decision of some problems, related to long;term storage of high level wastes (HLW) is needed. So, the future of nuclear power engineering is linked to our ability to effectively handle a nuclear waste. Vitrification, or immobilization of the nuclear waste in glass, has been and remains to be a popular way of its handling. But the operating period of glass matrices is about 40—50 years only. The effective alternative to vitrification has been immobilization of HLW in ceramic matrices and minerals. The central question is how effective a matrix will remain as a barrier over the required period of time, which for various isotopes varies from tens to tens of thousands years. For explaining different radiation stability of different minerals and technical materials some criteria have been offered in literature, one of which relates radiation stability to the ability to form glass by liquid quenching [19], second crite; © А.E. Grechanovsky, A.B. Brik, O.M. Ponomarenko, 2009 INFLUENCE OF STRUCTURE, CHARACTER OF CHEMICAL BONDING AND ELASTIC PROPERTIES ISSN 0204�3548. Мінерал. журн. 2009. 31, № 4 31 rion relates radiation stability to the "structure topology" [5], third — with degree of chemical bonds covalency in studied minerals [3, 4, 13, 17], fourth — with certain physical properties, such as a polymerization degree of mineral structures and bulk modulus of minerals [2]. In spite of conside; rable successes, many questions are not studied enough in this area of knowledge. It belongs, in particular, to finding out principles which deter; mine radiation stability of minerals. The purpose of this research is an attempt to find relation between the radiation stability of phos; phates, silicates and metal oxides and characteris; tics of its crystalline structures. Methods. The radiation stability of minerals was studied by molecular dynamics simulation method (MD simulation method). This method consists in calculation of atoms trajectories in a simulation box, using Newton's second law of motion. Initial coordinates and velocities of the atoms, and also interatomic potentials are set as initial data. We have used the following interatomic potentials for studied minerals: a) Buckingham potential in the form V(r) = A · exp(–r/ρ) – C · r –6, (1) with the parameters r — the distance between two atoms (°А), A — the pre;exponential factor for the repulsive part of the potential (eV), ρ — the hard; ness parameter (°А), C — the force parameter for Van der Waals interaction (eV · °А6); b) Potential of Morse in the form V(r) = D · [exp(–2α(r — r0)) — — 2exp(–α(r — r0))], (2) with the parameters r — the distance between two atoms (°А), D — the dissociation energy of the bonding atoms (eV), α — the softness parameter (°А–1), r0 — the bond distance between the atoms (°А). The parameters, appearing in (1) and (2) were taken from the works [3, 15, 17]. To establish these parameters optimization of the structures was per; formed using the experimental values of unit;cell parameters, bond lengths, bond angles, elastic constants and bulk modulus of studied minerals. As a recoil atom for the nanofragments of simu; lated minerals, containing about 2 ·105 atoms we have used the primary knock;оn atom (PKA) of thorium with energy of 10 keV. At such energies the number of Frenkel pairs increases in propor; tion to the PKA energy [1]. Therefore from methodological and practical points of view (li; mited computational power) using the PKA with energy of 10 keV is rational, in spite of the fact that the real energy of a thorium recoil atoms is about to 70 keV. For interatomic distances smaller than 1 °А, the pair potentials were fitted to the strong repulsive ZBL potentials [17]. On the preliminary stage of the simulations all structures were brought to the state of thermal equilibrium during 10 ps at 300 K using the NPT ensemble (constant pressure, temperature and number of atoms). The main stage of the simulations is performed using the NVE microcanonical ensemble (constant volume, energy and number of atoms). All MD simulations were performed using the DL_POLY molecular simulation package [17], designed to facilitate the molecular dynamics simulations of macromole; cules, polymers, ionic systems and minerals. For the calculation of the degree of chemical bonds covalency in studied minerals we have used the self;consistent SIESTA method [11], an implementation of the density functional theory (DFT) [6]. The electronic density was obtained using the exchange;correlation potential of Perdew in the Perdew;Burke;Ernzerhof parame; trization [12], and normconserving pseudopoten; tials in the Kleinman;Bylander form [8], to remove the core electrons from the calculations. The Kohn;Sham eigenstates were expanded in a localized basis set of numerical orbitals, calculated by the Numerov numerical method [7]. We have used a split;valence basis sets [11] during these quantum;chemical calculations. For the calculation of the effective charge of oxygen atoms in the minerals we have performed ab initio calculations by the Hartree;Fock method [14] using the B3LYP hybrid functional [3, 13] (density functional theory). We have used the PC GAMESS code [10] for this purpose. The para; meters of atoms basis sets are shown in Table 1: 1 — the atom type, 2 — the number and the types of Atom type Gaussian primitives Shells Mg O Ti Si P Ga Ca Zr Y 15s, 7p 14s, 6p, 2d 20s, 12p, 3d 15s, 9p, 1d 16s, 8p, 1d 21s, 13p, 5d 21s, 13p, 3d 26s, 17p, 9d 26s, 17p, 10d 1s, 3sp 1s, 3sp, 2d 1s, 3sp, 1d 1s, 3sp, 1d 1s, 3sp, 1d 1s, 5sp, 2d 1s, 4sp, 1d 1s, 4sp, 3d 1s, 4sp, 3d Table 1. Parameters of basis sets, used in Hartree�Fock calculations 32 ISSN 0204�3548. Mineral. Journ. (Ukraine). 2009. 31, No 4 gaussian primitives, 3 — the number and the types of shells, corresponding to these primitives (for example record "2d" indicates that some GTOs combines in two d;shells). We have used the connectivity index as a para; meter, which characterizes influence of mineral structure topology on its radiation stability. This parameter is determined as the number of polyhed; rons, connected in oxygen atoms positions. Results and discussion. The results of performed MD; and DFT simulations are given in Table 2. The following quantities are indicated in this table: 1 — the mineral and its chemical formula; 2 — the space group of mineral; 3 — the connectivity of mineral structure, which characterizes the number and the types of polyhedrons, connected in oxygen atoms positions; 4 — the bulk modulus G, which characterize the pressure ∆P needed for the rela; tive compression of a mineral on a value of ∆ε = = ∆V/V (G = ∆P/∆ε); 5 — the value of the elec; trons charge, localized between X and O atoms, which characterizes the degree of chemical X—O bond covalency; 6 — the number of Frenkel pairs NF and the linear size of a displacements cascade DF after defects annealing; 7 — the maximum number of Frenkel pairs Nmax and the linear size of a displacements cascade Dmax before defects annealing; 8 — the critical temperature of amor; phisation Tc (if T > Tc, then a mineral cannot be amorphized). Quantities from cl. 3 are given from the structural data, cl. 4 — from the experimental data [3, 15, 17], cl. 5—7 — from the results of this study (MD; and DFT simulations), cl. 8 — from the ion;beam irradiation experiments with 800 keV÷1.5 MeV Kr+ ions [9, 17]. The results of performed Hartree;Fock study of the minerals (the effective charge of oxygen atoms Q(O)) are given in Table 3. The ionic nature of the periclase structure implies that the Madelung potential must be included in the quantum;che; mical calculations. Indeed, several properties of MgO are incorrectly described if the long;range Mineral and its chemical formula Parameters, which characterize the mineral structures Results of MD; and DFT simulations Tc, K Space group Connectivity G, GPa Q(X–O), |e| Periclase MgO Rutile TiO2 Zircon ZrSiO4 Xenotime YPO4 Quartz SiO2 Cristobalite SiO2 Gallium phosphate GaPO4 Fluorapatite Ca10(PO4)6F2 Fm3m P42/mnm I41/amd I41/amd P3221 P41212 P3221 P63/m O—6Mg O—3Ti O—2Zr, Si O—2Y, P O—2Si O—2Si O1—Al, P O2—Al, P O1—2Ca1, P, Ca2 O2—2Ca1, P, Ca2 O3—Ca1, P, 2Ca2 240 237 222 147 33 16 40 99 –0.11 (X = Mg) –0.35 (X = Ti) –0.6 (X = Si) –0.29 (X = Zr) –0.61 (X = P) –0.25 (X = Y) –0.61 (X = Si) –0.62 (X = Si) –0.59 (X = P) –0.57 (X = Ga) –0.64 (X = P) –0.08 (X = Ca) 30 – 5 490 – 54 820 – 28 790 – 67 2220 – 128 3240 – 114 3240 – 143 1690 – 131 1280 – 71 6230 – 90 6600 – 62 7220 – 99 4430 – 136 6510 – 120 5650 – 143 15260 – 132 20 205 1000 428 1400 — 650 475 Table 2. Characteristics of studied minerals and results of MD simulations and DFT simulations of the minerals А.E. GRECHANOVSKY, A.B. BRIK, O.M. PONOMARENKO Nmax Dmin( °А) NF DF( °А) Mineral and its chemical formula Methodology Q(O), |e| Q(O), |e| [18] Periclase MgO Rutile TiO2 Zircon ZrSiO4 Xenotime YPO4 Quartz SiO2 Cristobalite SiO2 Gallium phos; phate GaPO4 Fluorapatite Ca10(PO4)6F2 Embedded cluster [Ti3O14]–16 cluster [Zr5Si6O44]–44 cluster [Y5P6O44]–43 cluster [Si5O16H12] cluster [Si6O18H12] cluster [Ga3P3O18H12] cluster [Ca9P6O27]–6 cluster –1.96 –1.29 –1.06 –0.96 –0.79 –0.78 –0.92 –1.18 –1.86 –1.26 — — –0.78 — — — Table 3. Results of Hartree�Fock calculations of studied minerals Coulomb interactions are not taken into account. To provide a simple representation of these inte; ractions we have used [Mg7O6]2+ fragment, embedded in large arrays of ±2 |e| point charges. For rutile, zircon, xenotime and fluorapatite struc; tures we have used respectively [Ti3O14]–16, [Zr5Si6O44]–44, [Y5P6O44]–43 and [Ca9P6O27]–6 clusters. Using of larger clusters was restricted due to limited computational power. In quartz, cristo; balite and gallium phosphate clusters (respectively [Si5O16H12], [Si6O18H12] and [Ga3P3O18H12]) dangling bonds have been saturated by H atoms, common procedure to terminate clusters of cova; lent materials [16]. The positions of H atoms were fixed at a distance of 0.96 °А from the respective O atoms along the O–Si and O–Ga directions. The position of all Si, Ga and O atoms of the clus; ter has been reoptimised. Electrostatic energy was taken into account for all quantum;chemical cal; culations. Urusov et al. data [18], obtained by means of the minimization of cohesive energy as the function of the oxygen atoms charge for three minerals (periclase, rutile, quartz), are also given in Table 3 for comparison of our results with other data. In the case of periclase (Fm3m space group) the connectivity index of the structure (Fig. 1) is equal to C = 6. Such high value of the connectivity index agreed with a low degree of Mg–O bond covalen; cy (Q(Mg–O) = –0.11 |e|), with a high value of oxygen charge (Q(O) = –1.96 |e|), and also with considerable radiation stability of this mineral (the number of Frenkel pair at the end of simulation NF = 30 and the critical temperature of amor; phization Tc = 20 K). The periclase structure is characterized by a high value of the bulk modulus (G = 240 GPa), however the size of displace; ments cascade before defects annealing Dmax = = 71 °А due to the presence of nanochanels in the structure. Rutile (P42/mnm space group) is characterized by the connectivity index C = 3 (Fig. 2). From other hand, the degree of chemical bonds covalen; cy is higher (Q(Ti–O) = –0.35 |e|) and the oxygen charge is less (Q(O) = –1.29 |e|) in compare with periclase structure. So, the radiation stability of rutile structure is less in compare with periclase structure both from the experimental data (Tc = = 205 K for rutile and Tc = 20 K for periclase) and from the MD simulations data (NF = 490 for rutile and NF = 30 for periclase). In spite of identical values of the bulk modulus of two minerals (G ≈ ≈ 240 GPa) rutile is characterized by a larger li; INFLUENCE OF STRUCTURE, CHARACTER OF CHEMICAL BONDING AND ELASTIC PROPERTIES ISSN 0204�3548. Мінерал. журн. 2009. 31, № 4 33 Fig. 1. Periclase structure Fig. 3. Zircon structure Fig. 2. Rutile structure near size of displacements cascade (Dmax = 90 °А) in compare with periclase. Zircon and xenotime structures (Fig. 3) with I41/amd space group are determined by the alter; nating edge;sharing [AO8] dodecahedrons (A = = Zr, Y) and [BO4] tetrahedrons (B = Si, P) for; ming chains parallel to the (001) axis. The connec; tivity index of these structures is C = 3, however unlike previous structures two AO8 polyhedrons and one BO4 tetrahedron are combine in every oxygen atom positions. From other hand, these structures are characterized by a large degree of chemical bonds covalency (Q(Si–O) = –0.6 |e| for zircon and Q(P–O) = –0.61 |e| for xenotime), and a small value of the oxygen charge (–1.06 |e| for zircon and –0.96 |e| for xenotime). These results agree with the radiation stability of zircon and xenotime, obtained from the MD simulation data (NF = 820 for zircon and NF = 790 for xenotime). In spite of this, the radiation stability from the MD simulation data for xenotime does not agree with the experimental data (Tc = 1000 K for zircon and Tc = 428 K for xenotime). This disagreement will be discussed below. A less value of the oxygen charge in xenotime than one in zircon correlates with a higher value of the maximum number of Frenkel pairs in xeno; time in compare with zircon (Nmax = 7220 for xenotime and Nmax = 6600 for zircon). Besides, for higher values of the PKA energy (the PKA energy is more than 10 keV) it can result in a hig; her value of the number of Frenkel pairs in xeno; time in compare with zircon after defects annea; ling. It should be also note that displacements cas; cade in xenotime has a larger sizes in compare with zircon (DF = 28 °А for zircon and DF = 67 °А for xenotime) due to a less bulk modulus in xenotime than one in zircon. Next two minerals (quartz and cristobalite) have a low radiation stability. In the case of quartz struc; ture (Fig. 4, a) with P3221 space group and cristo; balite structure (Fig. 5) with P41212 space group the connectivity index is equal C = 2. In addition, the degree of Si–O bond covalency is Q(Si–O) ≈ ≈ –0.6 |e| and the oxygen charge is Q(O) ≈ ≈–0.8 |e| for both structures. However, the radia; tion stability of cristobalite less than one of quartz because the bulk modulus in cristobalite less (G = = 16 GPa) in compare with quartz (G = 33 GPa). Gallium phosphate structure (Fig. 4, b) with P3221 space group is determined by the alternating PO4 and GaO4 tetrahedrons, spiraling along the three;two screw c;axis. PO4 and GaO4 tetrahed; rons are characterized by approximately equal covalency degree of P–O and Ga–O chemical bonds (Q(P–O) = –0.59 |e| and Q(Ga–O) = = –0.57 |e|), and the GaPO4 oxygen charge has even a higher value in compare with quartz. But, for the gallium phosphate structure a different tetrahedrons (PO4 and GaO4) are combined in every oxygen position. Consequently this material has a less radiation stability than quartz from the MD simulation data (NF = 3240 for GaPO4 and NF = 2220 for quartz), in spite of the fact that the bulk modulus in GaPO4 even more, than in quartz. However, as well as in the case of xenotime, the radiation stability of gallium phosphate from the MD simulation data does not agree with the expe; rimental data (Tc = 650 K for GaPO4 and Tc = = 1400 K for quartz). The last investigated mineral is fluorapatite with P63/m space group. In this mineral (Fig. 6) the connectivity index is equal C = 4. However, the process of defects annealing in a displacements cascade is complicated due to a difficult structure of fluorapatite (presence of three nonequivalent oxygen positions (O1, O2, O3) and two nonequi; А.E. GRECHANOVSKY, A.B. BRIK, O.M. PONOMARENKO 34 ISSN 0204�3548. Mineral. Journ. (Ukraine). 2009. 31, No 4 Fig. 4. Quartz (a) and gallium phosphate (b) structures Fig. 5. Cristobalite structure valent calcium positions (Ca1, Ca2)), large degree of P–O bond covalency (Q(P–O) = –0.64 |e|) and significant mobility of fluorine atoms. So, NF = = 1690 from the MD simulation data. However, as well as for others phosphate minerals, the radiation stability of fluorapatite from the MD simulation data does not agree with the experimental data (Tc = 475 K). It should be also noted, that a low value of the bulk modulus for fluorapatite (G = = 99 GPa) agrees with significant size of a dis; placements cascade (DF = 131 °А). We paid attention in this article that the radia; tion stability of phosphate minerals, obtained from the MD simulation data does not agree with the experimental data. This disagreement connected with the fact, that MD simulations have nanose; conds time;limit even for modern supercomputers. Defects annealing in a displacements cascade takes place during nanoseconds. However, after this time the radiation;enhanced recrystallization of amorphous zones takes place during significant; ly longer time scale. In the case of silicates the activation energy of the radiation;enhanced recrystallization of amor; phous zones has a large value Ea ≈ 3 eV [9] and the recrystallization does not take place at the mode; rate temperatures (T ≈ 500 K) even during the geological time. Therefore the radiation stability of silicates obtained from the MD simulation data agrees with the experimental data. For phosphates this energy is Ea ≈ 1÷1.5 eV [9] and even at the moderate temperatures (T ≈ 500 K) the recrystal; lization takes place very rapidly (in some cases during a seconds). In this case the MD simulation data reflect the number of Frenkel pairs, rema; ining in a structure after defects annealing in a dis; placements cascade. However, in the case of con; sideration of phosphates separately from silicates and metal oxides its radiation stability, obtained from the MD simulation data correlates with the experimental data — the critical temperature of amorphization decreases with decreasing the number of Frenkel pairs in phosphates. Our methods and approaches can be used for the decision of practical tasks. So, zircon;bearing rare;earth garnetiferous matrix (Ca3–xAx)× ×(Zr2–yFey) Fe3O12 (A = Ce, Th, La, Gd, Sr) was successfully synthesized in the Institute of envi; ronmental geochemistry of the National Academy of Sciences and Ministry of Emergencies of Ukraine. Gamma;irradiation of matrices samples was performed up to doses 2.3 ·107 Gy for the ve; rification of its radiation stability. The matrices samples remain in the crystalline state at such doses. From other hand, it is also important to investigate the matrices response on α;recoil atoms motion for the estimation of its radiation stability. Performing of heavy ion;beam irradia; tions of matrices needed for these investigations is impossible for our researchers at present. However such tasks can be decided by our com; puter simulations. Conclusions. The results of researches show that the radiation stability of minerals caused by vari; ous factors. In the case of metal oxides (periclase, rutile) two main factors are following: the connec; tivity index and the degree of chemical bonds covalency of the structures (or effective charge of oxygen atoms). In the case of silicates (zircon, quartz, cristobalite) one more factor which influ; ences on its radiation stability is the value of bulk modulus. Displacements cascades in minerals with a higher values of the bulk modulus are characte; rized by a less value of longitudinal dimensional and respectively these minerals are characterized by more radiation stability than minerals with a less value of the bulk modulus (these minerals must have related structures and close degrees of chemical bonds covalency). It should be noted that for metal oxides and si; licates the connectivity index and the effective charge of oxygen atoms are interconnected. Structures with a large connectivity index (peri; clase, rutile) are characterized by large values of both the effective charge of oxygen atoms and the radiation stability. Structures with a small connec; tivity index (quartz, cristobalite) are characterized by small values of both the effective charge of oxy; INFLUENCE OF STRUCTURE, CHARACTER OF CHEMICAL BONDING AND ELASTIC PROPERTIES ISSN 0204�3548. Мінерал. журн. 2009. 31, № 4 35 Fig. 6. Fluorapatite structure: 1 — Ca on 1/4 c; 2 — Ca on 3/4 c; 3 — Ca on 0, 1/2 c; 4 — O on 3/4 c; 5 — O on 1/4 c; 6 — O on 1/20, 3/20 c etc.; 7 — F on 1/4, 3/4 c. gen atoms and the radiation stability. In simple terms, the relevance of the type of interatomic forces for resistance to amorphization can be dis; cussed as follows. After the displacement of atoms by propagating heavy ion, the rearrangement of atoms needed to regain coherence with the crys; talline lattice involves significant atomic motion. In a covalent structure, the interactions can be thought of as short;range directional constraints, due to the substantial electronic charge being localized between the neighbouring atoms. Therefore cooperative atomic motion is "hooked" by the electrons between neighbouring atoms, and requires breaking directional covalent bonds with associated energy cost. On the other hand, highly ionic structure can be viewed as a collection of charged ions. The cooperative rolling of spheres which are only electrostatically charged, does not require additional activation energy, giving da; maged ionic structure better chances to re;establish coherence with crystalline lattice. Unlike silicates which are characterized by almost full absence of the radiation;enhanced recrystallization of amorphous zones at the mo; derate temperatures (T ≈ 500 K), this process takes place very rapidly in phosphates for these temperatures (in some cases during a seconds). However, in spite of peculiarities of phosphate structures, the radiation stability of phosphate minerals is influenced mainly by the connectivity index, the effective charge of oxygen atoms and "structure complication" (the number of different polyhedra, connected in oxygen positions, and the number of nonequivalent positions of oxygen atoms and cations in the structure). So, fluorapatite structure is characterized by a higher connectivity index (C = 4) as compared to xenotime structure (C = 3). However, fluor; apatite structure is more complicated, than xe; notime structure. So, the radiation stability of fluorapatite structure is a less in compare with xenotime structure (Tc = 428 K for xenotime and Tc = 475 K for fluorapatite). In the case of gallium phosphate GaPO4 the connectivity index is equal C = 2. So, the radiation stability of this material is a less (Tc = = 650 K) in compare with fluor; apatite or xenotime. Results of this study can be used for solving fun; damental and practice tasks connected with immobilization and disposal of a high;level waste. In particular, these results can be used for the assessment of radiation stability of matrices, pro; posed for immobilization of the high;level waste. Our computer simulations permit to analyze and predicted matrices reliability under radiation da; mage. Using computer simulation methods can save timing and money budgets and promotes to choice of the appropriated matrix. А.E. GRECHANOVSKY, A.B. BRIK, O.M. PONOMARENKO 36 ISSN 0204�3548. Mineral. Journ. (Ukraine). 2009. 31, No 4 1. Devanathan R., Corrales L.R., Weber W.J. et al. Molecular dynamics simulation of defect production in collision cas; cades in zircon // Nucl. Instrum. and Meth. in Phys. Res. B. — 2005. — 228. — P. 299—303. 2. Eby R.K., Ewing R.C., Birtcher R.C. Amorphization of complex silicates by ion;beam irradiation // J. Mater. Res. — 1992. — 7, No 11. — P. 3080—3102. 3. Grechanovsky A.E. The influence of structure and chemical bonding on the radiation stability of U;, Th;minerals : dis. cand. phys.;math. sci. / M.P. Semenenko In;te of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine. — Kyiv, 2008. — 152 p. — Typing (in Russian). 4. Grechanovsky A.E., Brik A.B., Ponomarenko A.N., Kalinichenko A.M. Mechanisms of formation and properties of nano; sized systems in metamict zircons // Mineralogical Intervention in Micro; and Nanoworld : Materials of Intern. miner. sem. — Syktyvkar : Geoprint, 2009. — P. 194—196 (in Russian). 5. Hobbs L.W. The role of topology and geometry in the irradiation;induced amorphization of network structures // J. Non;Cryst. Sol. — 1995. — 182, No 1. — P. 27—39. 6. Hohenberg P., Kohn W. Inhomogeneous Electron Gas // Phys. Rev. B. — 1964. — 136, No 3. — P. 864—871. 7. Junquera J., Paz O., Sanchez�Portal D., Artacho E. Numerical atomic orbitals for linear;scaling calculations // Ibid. — 2001. — 64, No 23. — P. 235111. 8. Kleinman L., Bylander D.M. Efficacious Form for Model Pseudopotentials // Phys. Rev. Lett. — 1982. — 48, No 20. — P. 1425—1428. 9. Meldrum A., Boatner L.A., Ewing R.C. A comparison of radiation effects in crystalline ABO4;type phosphates and sili; cates // Miner. Mag. — 2000. — 64, No 2. — P. 185—194. 10. Nemukhin A.V., Grigorenko B.L., Granovsky A.A. Molecular modelling by using the PC GAMESS program : From diatomic molecules to enzymes // Chem. Bull. Moscow Univ. — 2004. — 45, No 2. — P. 75—102. 11. Ordejon P., Artacho E., Soler J.M. Self;consistent order;N density;functional calculations for very large systems // Phys. Rev. B. — 1996. — 53, No 16. — P. R10441—R10444. 12. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. — 1996. — 77, No 18. — P. 3865—3868. 13. Ponomarenko A.N., Brik A.B., Grechanovsky A.E. et al. Physical Models, Investigation Methods and Properties of Metamict Zircons // Mineral. Journ. (Ukraine). — 2009. — 31, No 2. — P. 20—38 (in Russian). INFLUENCE OF STRUCTURE, CHARACTER OF CHEMICAL BONDING AND ELASTIC PROPERTIES ISSN 0204�3548. Мінерал. журн. 2009. 31, № 4 37 14. Pople J.A., Nesbet R.K. Self;Consistent Orbitals for Radicals // J. Chem. Phys. — 1954. — 22, No 3. — P. 571—572. 15. Rabone J.A.L., Carter A., Hurford A.J., de Leeuw N.H. Modelling the formation of fission tracks in apatite minerals using molecular dynamis simulations // Phys. Chem. Miner. — 2008. — 35, No 10. — P. 583—596. 16. Sauer J., Ugliengo P., Garrone E., Saunders V.R. Theoretical Study of Van der Waals Complexes at Surface Sites in Comparison with the Experiment // Chem. Rev. — 1994. — 94, No 7. — P. 2095—2160. 17. Trachenko K., Pruneda J.M., Artacho E., Dove M.T. How the nature of the chemical bond governs resistance to amor; phization by radiation damage // Phys. Rev. B. — 2005. — 71, No 18. — P. 184104. 18. Urusov V.S., Eremin N.N. Charge — transfer energy in computer modelling of structure and properties of minerals // Phys. Chem. Miner. — 1997. — 24, No 5. — P. 374—383. 19.Wang S.X., Wang L.M., Ewing R.C., Doremus R.H. Ion beam;induced amorphization in MgO–Al2O3–SiO2. I. Experimental and theoretical basis // J. Non;Cryst. Sol. — 1998. — 238, No 3. — P. 198—213. 20. http://mpe.kmu.gov.ua/fuel/control/uk/publish/article?art_id=50310&cat_id=104126 (site of ministry of Fuel and Energy of Ukraine). M.P. Semenenko Inst. of Geochemistry, Mineralogy Received 14.09.2009 and Ore Formation of the NAS of Ukraine, Kyiv РЕЗЮМЕ. Радіаційна стійкість мінералів периклазу MgO, рутилу TiO2, циркону ZrSiO4, ксенотиму YPO4, квар; цу SiO2, кристобаліту SiO2, фосфату галію GaPO4 та фторапатиту Ca10(PO4)6F2 досліджена за допомогою методів комп’ютерного моделювання. Кількість пар Френкеля, які формуються в структурі мінералу після проходження первинно вибитого атому торію з енергією 10 кеВ, розраховано за допомогою методу молекулярної динаміки. За методом SIESTA (теорія функціонала густини) проведені обчислення ступеня ковалентності хімічних зв’язків для цих мінералів. Обчислення ефективних зарядів атомів кисню проведені з використанням неемпіричного методу Хартрі;Фока та гібридного функціонала B3LYP. Встановлено, що радіаційна стійкість досліджених мінералів значною мірою залежить від топології структури (зв’язність структури, кількість різних поліедрів, що з’єднуються в позиціях атомів кисню, кількість нееквівалентних позицій атомів кисню та катіонів). Окрім того, радіаційна стійкість силікатів та оксидів металів значною мірою залежить від значень ефективних зарядів атомів кисню. Показано, що модуль об’ємної пружності мінералів також є важливим параметром, що впливає на радіаційну стійкість мінералів з однотипними структурами. РЕЗЮМЕ. Радиационная устойчивость таких минералов, как периклаз MgO, рутил TiO2, циркон ZrSiO4, ксе; нотим YPO4, кварц SiO2, кристобалит SiO2, фосфат галлия GaPO4 и фторапатит Ca10(PO4)6F2 изучена с помощью методов компьютерного моделирования. Количество пар Френкеля, которые формируются в структуре мине; рала после прохождения первично выбитого атома тория с энергией 10 кэВ, рассчитано с помощью метода молекулярной динамики. По методу SIESTA (теория функционала плотности) проведены вычисления степени ковалентности химических связей для этих веществ. Неэмпирические расчеты методом Хартри;Фока с при; менением гибридного функционала B3LYP были выполнены для вычисления эффективных зарядов атомов кислорода в минералах. Установлено, что радиационная устойчивость исследованных минералов в значительной степени зависит от топологии структуры (связность структуры, количество различных полиэдров, которые соединяются в позициях атомов кислорода, количество неэквивалентных позиций атомов кислорода и катио; нов). Кроме того, радиационная устойчивость силикатов и оксидов металлов в значительной степени зависит от значений эффективных зарядов атомов кислорода. Показано, что модуль объемной упругости также служит важным параметром, влияющим на радиационную устойчивость минералов с однотипными структурами.