Convenient formulae for some integrals in perturbation theory

The free energy and pressure of a fluid, as given by perturbation theory, involve integrals of the hard sphere correlation functions and their density derivatives. In most applications a straightforward procedure would be to obtain these integrals, possibly numerically, using the formulae and comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Condensed Matter Physics
Datum:2010
1. Verfasser: Henderson, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2010
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/32040
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Convenient formulae for some integrals in perturbation theory / D. Henderson // Condensed Matter Physics. — 2010. — Т. 13, № 1. — С. 13002: 1-10. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-32040
record_format dspace
spelling Henderson, D.
2012-04-06T17:22:40Z
2012-04-06T17:22:40Z
2010
Convenient formulae for some integrals in perturbation theory / D. Henderson // Condensed Matter Physics. — 2010. — Т. 13, № 1. — С. 13002: 1-10. — Бібліогр.: 16 назв. — англ.
1607-324X
PACS: 02.30.Qy, 02.30.Rz, 05.20.Jj, 05.70.Ce, 64.30.+t
https://nasplib.isofts.kiev.ua/handle/123456789/32040
The free energy and pressure of a fluid, as given by perturbation theory, involve integrals of the hard sphere correlation functions and their density derivatives. In most applications a straightforward procedure would be to obtain these integrals, possibly numerically, using the formulae and computer codes for the hard sphere correlation functions, given previously [Mol. Phys., 2007, 106, 2; Condens. Matter Phys., 2009, 12, 127], followed by numerical differentiation with respect to the density and a possible compounding of errors. More sophisticated methods are given in this paper, which is the second in a planned trilogy, drawn from the author's lecture notes. Three representative model fluids are considered. They are the square-well fluid, the Yukawa fluid, and the Lennard-Jones fluid. Each model fluid is popular for theoretical and engineering calculations and can represent a simple fluid such as argon. With the methods presented here, numerical integration and differentiation are not necessary for the square-well and Yukawa fluids. Numerical integration cannot be easily avoided in the case of the Lennard-Jones fluid. However, numerical differentiation with respect to the density is not required.
Зазначено, що вирази для вільної енергії та тиску плину, одержані за допомогою теорії збурень, включають в себе інтеграли як від кореляційних функцій твердих сфер, так і від їх похідних за густиною. В більшості застосувань ці інтеграли можна одержати, також і числово, з застосуванням простої процедури, що використовує формули та комп'ютерні коди для кореляційних функцій твердих сфер, які одержано раніше [Mol. Phys., 2007, 106, 2; Condens. Matter Phys., 2009, 12, 127], а також числове диференціювання за густиною, що може призвести у цьому випадку до можливих похибок. Запропоновано складніші методи. Розглянуто відомі моделі плину, взаємодія в яких представляється за допомогою трьох потенціалів, а саме: потенціалу типу прямокутної ями, потенціалу Юкави та потенціалу Леннарда - Джонса. Кожний із цих модельних плинів широко використовується у теоретичних та інженерних обчисленнях для опису такого простого плину як аргон. Із використанням представлених методів числове інтегрування та диференціювання перестає бути необхідним у випадках потенціалу типу прямокутної ями і потенціалу Юкави. Числового інтегрування не можна легко уникнути у випадку потенціалу Леннарда - Джонса. Проте, числове диференціювання за густиною не вимагається.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
Convenient formulae for some integrals in perturbation theory
Зручні формули для деяких інтегралів у теорії збурень
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Convenient formulae for some integrals in perturbation theory
spellingShingle Convenient formulae for some integrals in perturbation theory
Henderson, D.
title_short Convenient formulae for some integrals in perturbation theory
title_full Convenient formulae for some integrals in perturbation theory
title_fullStr Convenient formulae for some integrals in perturbation theory
title_full_unstemmed Convenient formulae for some integrals in perturbation theory
title_sort convenient formulae for some integrals in perturbation theory
author Henderson, D.
author_facet Henderson, D.
publishDate 2010
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Зручні формули для деяких інтегралів у теорії збурень
description The free energy and pressure of a fluid, as given by perturbation theory, involve integrals of the hard sphere correlation functions and their density derivatives. In most applications a straightforward procedure would be to obtain these integrals, possibly numerically, using the formulae and computer codes for the hard sphere correlation functions, given previously [Mol. Phys., 2007, 106, 2; Condens. Matter Phys., 2009, 12, 127], followed by numerical differentiation with respect to the density and a possible compounding of errors. More sophisticated methods are given in this paper, which is the second in a planned trilogy, drawn from the author's lecture notes. Three representative model fluids are considered. They are the square-well fluid, the Yukawa fluid, and the Lennard-Jones fluid. Each model fluid is popular for theoretical and engineering calculations and can represent a simple fluid such as argon. With the methods presented here, numerical integration and differentiation are not necessary for the square-well and Yukawa fluids. Numerical integration cannot be easily avoided in the case of the Lennard-Jones fluid. However, numerical differentiation with respect to the density is not required. Зазначено, що вирази для вільної енергії та тиску плину, одержані за допомогою теорії збурень, включають в себе інтеграли як від кореляційних функцій твердих сфер, так і від їх похідних за густиною. В більшості застосувань ці інтеграли можна одержати, також і числово, з застосуванням простої процедури, що використовує формули та комп'ютерні коди для кореляційних функцій твердих сфер, які одержано раніше [Mol. Phys., 2007, 106, 2; Condens. Matter Phys., 2009, 12, 127], а також числове диференціювання за густиною, що може призвести у цьому випадку до можливих похибок. Запропоновано складніші методи. Розглянуто відомі моделі плину, взаємодія в яких представляється за допомогою трьох потенціалів, а саме: потенціалу типу прямокутної ями, потенціалу Юкави та потенціалу Леннарда - Джонса. Кожний із цих модельних плинів широко використовується у теоретичних та інженерних обчисленнях для опису такого простого плину як аргон. Із використанням представлених методів числове інтегрування та диференціювання перестає бути необхідним у випадках потенціалу типу прямокутної ями і потенціалу Юкави. Числового інтегрування не можна легко уникнути у випадку потенціалу Леннарда - Джонса. Проте, числове диференціювання за густиною не вимагається.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/32040
citation_txt Convenient formulae for some integrals in perturbation theory / D. Henderson // Condensed Matter Physics. — 2010. — Т. 13, № 1. — С. 13002: 1-10. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT hendersond convenientformulaeforsomeintegralsinperturbationtheory
AT hendersond zručníformulidlâdeâkihíntegralívuteoríízburenʹ
first_indexed 2025-12-07T20:30:22Z
last_indexed 2025-12-07T20:30:22Z
_version_ 1850882834856673280