The second critical density and anisotropic generalised condensation

In this letter we discuss the relevance of the 3D Perfect Bose gas (PBG) condensation in extremely elongated vessels for the study of anisotropic condensate coherence and the "quasi-condensate". To this end we analyze the case of exponentially anisotropic (van den Berg) boxes, when there a...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Condensed Matter Physics
Дата:2010
Автори: Beau, M., Zagrebnov, V.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2010
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/32089
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The second critical density and anisotropic generalised condensation / M. Beau, V.A. Zagrebnov // Condensed Matter Physics. — 2010. — Т. 13, № 2. — С. 23003: 1-10. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this letter we discuss the relevance of the 3D Perfect Bose gas (PBG) condensation in extremely elongated vessels for the study of anisotropic condensate coherence and the "quasi-condensate". To this end we analyze the case of exponentially anisotropic (van den Berg) boxes, when there are two critical densities ρc<ρm for a generalised Bose-Einstein Condensation (BEC). Here ρc is the standard critical density for the PBG. We consider three examples of anisotropic geometry: slabs, squared beams and "cigars" to demonstrate that the "quasi-condensate" which exists in domain ρc<ρ<ρm is in fact the van den Berg-Lewis-Pulé generalised condensation (vdBLP-GC) of the type III with no macroscopic occupation of any mode. We show that for the slab geometry the second critical density ρm is a threshold between quasi-two-dimensional (quasi-2D) condensate and the three dimensional (3D) regime when there is a coexistence of the "quasi-condensate" with the standard one-mode BEC. On the other hand, in the case of squared beams and "cigars" geometries, critical density ρm separates quasi-1D and 3D regimes. We calculate the value of the difference between ρc, ρm (and between corresponding critical temperatures Tm, Tc) to show that the observed space anisotropy of the condensate coherence can be described by a critical exponent γ(T) related to the anisotropic ODLRO. We compare our calculations with physical results for extremely elongated traps that manifest "quasi-condensate".
ISSN:1607-324X