Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation
For a Bose atom system whose energy operator is diagonal in the so-called number operators and its ground state has an internal two-level structure with negative energies, exact expressions for the limit free canonical energy and pressure are obtained. The existence of non-conventional Bose-Einstein...
Saved in:
| Published in: | Condensed Matter Physics |
|---|---|
| Date: | 2010 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут фізики конденсованих систем НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/32120 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation / M. Corgini, D.P. Sankovich // Condensed Matter Physics. — 2010. — Т. 13, № 4. — С. 43003:1-11. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-32120 |
|---|---|
| record_format |
dspace |
| spelling |
Corgini, M. Sankovich, D.P. 2012-04-09T20:41:48Z 2012-04-09T20:41:48Z 2010 Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation / M. Corgini, D.P. Sankovich // Condensed Matter Physics. — 2010. — Т. 13, № 4. — С. 43003:1-11. — Бібліогр.: 9 назв. — англ. 1607-324X PACS: 05.30.Jp, 67.85.Jk https://nasplib.isofts.kiev.ua/handle/123456789/32120 For a Bose atom system whose energy operator is diagonal in the so-called number operators and its ground state has an internal two-level structure with negative energies, exact expressions for the limit free canonical energy and pressure are obtained. The existence of non-conventional Bose-Einstein condensation has been also proved. Для системи Бозе-атомів, чий оператор енергії є діагональним за так званим числом операторів і його основний стан має внутрішню дворівневу структуру з негативними енергіями, одержано точні вирази для граничних вільної канонічної енергії та тиску. Доведено існування нестандартної Бозе - Айнштайнівської конденсації. Partial financial support by PBCT–ACT13 (Stochastic Analysis Laboratory, Chile) and Programa de Magıster en Matematicas, Universidad de La Serena, Chile. en Інститут фізики конденсованих систем НАН України Condensed Matter Physics Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation Розв'язна модель Бозе-атомів з дворівневою внутрішньою структурою: нестандартна Бозе - Айнштайнівська конденсація Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation |
| spellingShingle |
Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation Corgini, M. Sankovich, D.P. |
| title_short |
Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation |
| title_full |
Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation |
| title_fullStr |
Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation |
| title_full_unstemmed |
Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation |
| title_sort |
soluble model of bose-atoms with two level internal structure: non-conventional bose-einstein condensation |
| author |
Corgini, M. Sankovich, D.P. |
| author_facet |
Corgini, M. Sankovich, D.P. |
| publishDate |
2010 |
| language |
English |
| container_title |
Condensed Matter Physics |
| publisher |
Інститут фізики конденсованих систем НАН України |
| format |
Article |
| title_alt |
Розв'язна модель Бозе-атомів з дворівневою внутрішньою структурою: нестандартна Бозе - Айнштайнівська конденсація |
| description |
For a Bose atom system whose energy operator is diagonal in the so-called number operators and its ground state has an internal two-level structure with negative energies, exact expressions for the limit free canonical energy and pressure are obtained. The existence of non-conventional Bose-Einstein condensation has been also proved.
Для системи Бозе-атомів, чий оператор енергії є діагональним за так званим числом операторів і його основний стан має внутрішню дворівневу структуру з негативними енергіями, одержано точні вирази для граничних вільної канонічної енергії та тиску. Доведено існування нестандартної Бозе - Айнштайнівської конденсації.
|
| issn |
1607-324X |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/32120 |
| citation_txt |
Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation / M. Corgini, D.P. Sankovich // Condensed Matter Physics. — 2010. — Т. 13, № 4. — С. 43003:1-11. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT corginim solublemodelofboseatomswithtwolevelinternalstructurenonconventionalboseeinsteincondensation AT sankovichdp solublemodelofboseatomswithtwolevelinternalstructurenonconventionalboseeinsteincondensation AT corginim rozvâznamodelʹbozeatomívzdvorívnevoûvnutríšnʹoûstrukturoûnestandartnabozeainštainívsʹkakondensacíâ AT sankovichdp rozvâznamodelʹbozeatomívzdvorívnevoûvnutríšnʹoûstrukturoûnestandartnabozeainštainívsʹkakondensacíâ |
| first_indexed |
2025-11-24T16:57:52Z |
| last_indexed |
2025-11-24T16:57:52Z |
| _version_ |
1850490004892024832 |
| fulltext |
Condensed Matter Physics 2010, Vol. 13, No 4, 43003: 1–11
http://www.icmp.lviv.ua/journal
Soluble model of Bose-atoms with two level internal
structure: non-conventional Bose-Einstein
condensation
M. Corgini1,2 ∗, D.P. Sankovich3 †
1 Departamento de Matemáticas, Universidad de La Serena, Cisternas 1200, La Serena, Chile
2 Laboratorio de Análisis Estocástico, Chile
3 Steklov Mathematical Institute, Gubkin Str. 8, 119991, Moscow, Russia
Received July 21, 2010
For a Bose atom system whose energy operator is diagonal in the so-called number operators and its ground
state has an internal two-level structure with negative energies, exact expressions for the limit free canonical
energy and pressure are obtained. The existence of non-conventional Bose-Einstein condensation has been
also proved.
Key words: approximating Hamiltonian method, non-conventional Bose-Einstein condensation
PACS: 05.30.Jp, 67.85.Jk
1. Introduction
We use an approach based on a suitable expression obtained for the limit free canonical energy
in order to determine the limit pressure of a Bose-atom system with internal two-level structure.
This enables us to recover some results, related to non-conventional Bose-Einstein condensation
(BEC), obtained in [1] in the framework of the approximating Hamiltonians method ([2]).
In section 2 we present a description of the main mathematical features associated with this
model. In section 3 we obtain the limit free canonical energy of the model. It leads via Legendre
transform to the limit pressure, recovering the previous results obtained in [1]. Finally in section 4
it is proved that the system undergoes non-conventional BEC (independent of temperature BEC).
2. The model
The one-particle free Hamiltonian corresponds to the operator Sl = −△/2 defined on a dense
subset of the Hilbert space Hl = L2(Λl), being Λl = [−l/2, l/2]
d
⊂ Rd a cubic box of boundary
∂Λl and volume Vl = ld. In other words, the particles are confined to bounded regions. We assume
periodic boundary conditions under which Sl becomes a self-adjoint operator.
We consider a system of Bose atoms with an internal two-level structure analogous to the SU2
spin symmetry. In this case any one-particle wave function has the form φ ⊗ s where, φ ∈ L2(Λl)
and s ∈ C
2 represents the internal state. Therefore, the vector space associated with this system
is in fact, Hl
s = L2(Λl)⊗ C2.
We shall study a model of Bose particles whose Hamiltonian is given by:
Ĥl = Ĥ0
l +
a
Vl
∑
p∈Λ∗
l
,σ
(â†p,σ)
2â2p,σ +
γ
Vl
n̂0,−n̂0,+ , (1)
∗E-mail: mcorgini@userena.cl
†E-mail: sankovch@mi.ras.ru
c© M. Corgini, D.P. Sankovich 43003-1
http://www.icmp.lviv.ua/journal
M. Corgini, D.P. Sankovich
where σ = + or − depending on the corresponding internal level. The second term at the right
hand side of equation (1) represents the intrastate collisions (self-scattering term), the third term
represents the interstate collisions (cross-scattering term).
This model has been exhaustively studied in [1] by using the so-called method of approximating
Hamiltonians developed in [2]. Here we shall obtain an analytical expression for the limit pressure
of our model as the Legendre transform of the free canonical energy.
The sum in (1) runs over the set Λ∗
l = {p = (p1, . . . , pd) ∈ Rd : pα = 2πnα/l, nα ∈ Z, α =
1, 2, . . . , d}. â†p,σ, âp,σ are the Bose operators of creation and annihilation of particles defined on
the Bose Fock space FB and satisfying the usual commutation rules: [âq,σ1 , â
†
p,σ2
] = âq,σ1 â
†
p,σ2
−
â†p,σ2
âq,σ1 = δp,qδσ1,σ2 . n̂p,σ = â†p,σâp,σ is the number operator associated with mode p and
internal level σ. In this case Ĥ0
l =
∑
p∈Λ∗
l
,σ
λl(p, σ)n̂p,σ, a > 0, γ ∈ R. N̂ =
∑
p∈Λ∗
l
,σ
â†p,σâp,σ is the
total number operator, N̂
′
=
∑
p∈Λ∗
l
\{0},σ
â†p,σâp,σ is the total number operator with exclusion of
n̂0,−, n̂0,+ and
λl(p, σ) =
{
λl(0, σ) < 0, p = 0,
p2/2, p 6= 0,
where λl(0,−) = −λ − O(V −s
l ), λl(0,+) = −λ + O(V −s
l ) with s > 0, λ > 0 and λl(0, σ) →
λ(0, σ) = −λ as Vl → ∞.
Note that the boson Fock space FB is isomorphic to the tensor product ⊗σ,p∈Λ∗
l
FB
p,σ where FB
p,σ
is the boson Fock space constructed on the one-dimensional Hilbert space Hp,σ = {γeip·x⊗eσ}γ∈C,
where e− = (0, 1) and e+ = (1, 0).
Let
pl(β, µ) =
1
βVl
lnTrFB exp
(
−β(Ĥl − µN̂)
)
(2)
be the grand-canonical pressure, at finite volume, corresponding to Ĥl, where β = θ−1 is the inverse
temperature.
If Ĥl(µ) = Ĥl−µN̂ , the equilibrium Gibbs state (grand canonical ensemble) 〈−〉Ĥl(µ)
is defined
as
〈Â〉Ĥl(µ)
=
[
TrFB exp
(
−βĤl(µ)
)]−1
TrFB Â exp
(
−βĤl(µ)
)
, (3)
for any operator  acting on the symmetric Fock space.
Finally, the total density of particles ρ(µ) for infinite volume is defined as
lim
Vl→∞
〈
N̂
Vl
〉
Ĥl(µ)
= lim
Vl→∞
ρl(µ) = ρ(µ), (4)
and the density of particles ρ0,σ(β, µ) associated with the energy λ(0, σ) = −λ is defined as
lim
Vl→∞
〈
n̂0,σ
Vl
〉
Ĥl(µ)
= lim
Vl→∞
ρ0,σ,l(β, µ) = ρ0,σ(β, µ). (5)
We shall say that the system undergoes a macroscopic occupation of the single particle mode
(0, σ) (BEC) if ρ0,σ(β, µ) > 0.
3. Pressure
Let fl(β, ̺) be the free canonical energy at finite volume Vl, inverse temperature β and density
̺, corresponding to Hamiltonian given by equation (1). Let f̃l(β, ̺), f
id
l (β, ̺), f id
′
l (β, ̺) be the
43003-2
Model of Bose-atoms with internal structure
finite free canonical energies associated with H̃l, Ĥ
id
l , and Ĥ id
′
l , respectively. These operators are
given by
H̃l = Ĥ id
l +
a
Vl
∑
p∈Λ∗
l
,σ
n̂2
p,σ +
γ
Vl
n̂0,−n̂0,+ ,
where
Ĥ id
l = −λ(n̂0,− + n̂0,+) +
∑
p∈Λ∗
l
\{0},σ
λl(p, σ)n̂p,σ ,
Ĥ id
′
l =
∑
p∈Λ∗
l
\{0},σ
λl(p, σ)n̂p,σ .
Let f(β, ̺), f̃(β, ̺), f id(β, ̺), f id
′
(β, ̺) be the corresponding limit free canonical energies.
Let ̺l = N/Vl, ̺ = lim
Vl,N→∞
̺l = constant. We shall use the symbol ̺ when referring to ̺l or ̺
indistinctively, avoiding excessive notation.
The strategy developed in [3] enables us to prove the following theorem.
Theorem 1.
f̃(β, ̺) = − inf
̺0,−,̺0,+∈[0,̺]
{
− λ(̺0,− + ̺0+) + a̺20,− + a̺20,+ + γ̺0−̺0+ + f id
′
(β, ̺− ̺0)
}
. (6)
Proof. Being np,σ = 0, 1, 2, . . . , ̺0,− = n0,−/Vl, ̺0,+ = n0,+/Vl, the finite canonical free energies
f id
l (β, ̺), f̃l(β, ̺), can be written in the following form,
f id
l (β, ̺) = −
1
βVl
ln
∑
np,σ=0,1,2,...,p∈Λ∗
l
,σ
exp
(
−β
∑
λl(p, σ)np,σ
)
δ∑
p∈Λ∗
l
,σ
np,σ=[̺Vl] , (7)
f̃l(β, ̺) = −
1
βVl
ln
∑
···+np,σ+···=[̺Vl]
e−βVlhl(̺,̺0,−,̺0,+)
, (8)
where
hl(̺, ̺0,−, ̺0,+) = −λ(̺0,− + ̺0,+) + ̺20,+ + a̺20,+ + γ̺0,−̺0,+
−
1
βVl
ln
∑
np,σ=0,1,...,p∈Λ∗
l
\{0},σ
exp
[
−β
(
∑
λl(p, σ)np,σ +
a
Vl
n2
p,σ
)]
δN ′=[̺Vl]−[̺0Vl]
(9)
and N
′
=
∑
p∈Λ∗
l
\{0},σ
np,σ. The following inequality
− f̃l(β, ̺) =
1
βVl
ln
∑
..+np,σ+..=[̺Vl]
e−βVlhl(̺,̺0,− ,̺0,+)
>
1
βVl
ln
(
e−βVlhl(̺,̺0,−,̺0,+)
)
= −hl(̺, ̺0,−, ̺0,+), (10)
holds for ̺0,−, ̺0,+ ∈ [0, ̺], being [b] the integer part of b. Equation (10) implies that,
f̃l(β, ̺) 6 inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+). (11)
43003-3
M. Corgini, D.P. Sankovich
On the other hand, being n0 = n0,+ + n0,−, we have,
− f̃l(β, ̺) 6
1
βVl
ln
[̺Vl]
∑
n0=0,N ′=0
exp
(
−βVl inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+)
)
6
1
βVl
ln
exp
(
−βVl inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+)
) [̺Vl]
∑
n0=0,N ′=0
1
6 − inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+) +
2
βVl
ln
(
1 +
[̺Vl](1 + [̺Vl])
2
)
6 − inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+) +
4
βVl
ln([̺Vl] + 1). (12)
Thus, we obtain the inequalities
inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+) −
4
βVl
ln([̺Vl] + 1) 6 f̃l(β, ̺) 6 inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+). (13)
Therefore, in the thermodynamic limit it follows that,
f̃(β, ̺) = lim
Vl→∞
inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+). (14)
hl(̺, ̺0,−, ̺0,+) can be rewritten as
hl(̺, ̺0,−, ̺0,+) = −λ(̺0,− + ̺0,+) + a̺20,− + a̺20,+ + γ̺0,−̺0,+
−
1
Vl
ln
〈
exp
−
βa
Vl
∑
p∈Λ∗
l
\{0},σ
n̂2
p,σ
〉
Ĥid
′
l
(β,̺−̺0)
+ f id
′
l (β, ̺− ̺0), (15)
being 〈−〉
Ĥid
′
l
(β,̺−̺0)
the canonical Gibbs state associated with Ĥ id
′
l (β, ̺−̺0). Since the limit free
canonical energy of the free Bose gas is the Legendre transform of the corresponding pressure, we
get,
lim
Vl→∞
f id
′
l (β, ̺) = f id
′
(β, ̺) = sup
α60
{α̺− pid
′
(β, α)}, (16)
being pid
′
(β, α) the limit grand canonical pressure associated with Ĥ id
′
l .
From the Jensen inequality we get
〈
exp
−
βa
Vl
∑
p∈Λ∗
l
\{0},σ
n̂2
p,σ
〉
Ĥid
′
l
(β,̺−̺0)
> exp
−βaVl
∑
p∈Λ∗
l
\{0},σ
〈
n̂2
p,σ
V 2
l
〉
Ĥid
′
l
(β,̺−̺0)
. (17)
For p and Vl fixed and r > 1, r ∈ Z+, the moments
〈
n̂r
p,σ
〉
Ĥid
′
l
(β,̺−̺0)
in the canonical ensemble, are monotonously increasing functions of ̺ (see [4, 5]). Therefore,
〈
n̂2
p,σ
V 2
l
〉
Ĥid
′
l
(µ(̺−̺0))
=
∫
[0,∞)
〈
n̂2
p,σ
V 2
l
〉
Ĥid
′
l
(β,x)
K̂Vl
(̺− ̺0, dx)
>
∫
[̺−̺0,∞)
〈
n̂2
p,σ
V 2
l
〉
Ĥid
′
l
(β,x)
K̂Vl
(̺− ̺0, dx)
>
〈
n̂2
p,σ
V 2
l
〉
Ĥid
′
l
(β,̺−̺0)
K̂Vl
(̺− ̺0, [̺− ̺0,∞)),
43003-4
Model of Bose-atoms with internal structure
where 〈·〉
Ĥid
′
l
(µ)
is the Gibbs state associated with Ĥ id
′
l in the grand-canonical ensemble given by
equation (3) and K̂Vl
(̺ − ̺0, dx) is the so-called Kac measure of the perfect Bose gas at finite
volume Vl ([4, 6]) given by,
K̂Vl
(̺, dx) = δ(x− ̺)dx
for ̺ 6 ̺c(β), being ̺, ̺c(β) = 2(2π)−d
∫
Rd(e
βp2/2 − 1)−1dp, the density and the critical density
of the perfect Bose gas (the case of atoms with internal structure), respectively, and
K̂Vl
(̺, dx) =
{
0, for x 6 ̺c(β),
(̺− ̺c(β))
−1 exp
(
−x−̺c(β)
̺−̺c(β)
)
dx, for x > ̺c(β)
for ̺ > ̺c(β).
Using the latter inequality and taking into account that
lim
Vl→∞
K̂Vl
(̺− ̺0, [̺− ̺0,∞)) 6= 0,
lim
Vl→∞
∑
p∈Λ∗
l
\{0},σ
〈
n̂2
p,σ
V 2
l
〉
Ĥid
′
l
(µ(̺−̺0))
= 0,
we get
lim
Vl→∞
∑
p∈Λ∗
l
\{0},σ
〈
n̂2
p,σ
V 2
l
〉
Ĥid
′
l
(β,̺−̺0)
= 0.
Then, equations (15) and (17) imply that,
lim
Vl→∞
inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+) 6 inf
̺0−,̺0+∈[0,̺]
{−λ(̺0,− + ̺0,+)
+ a̺20,+ + a̺20,+ + γ̺0,−̺0,+ + f id
′
(β, ̺− ̺0)}. (18)
On the other hand, since exp
{
− βa/Vl
∑
p∈Λ∗
l
\{0},σ
n2
p,σ
}
6 1 from equation (15) we get,
lim
Vl→∞
inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+) > lim
Vl→∞
inf
̺0,−,̺0,+∈[0,̺]
{−λ(̺0,− + ̺0,+)
+ a̺20,− + a̺20,+ + γ̺0,−̺0,+ + f id
′
l (β, ̺− ̺0)}. (19)
Equations (18), (19) imply
lim
Vl→∞
inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+) = lim
Vl→∞
inf
̺0,−,̺0,+∈[0,̺]
{−λ(̺0,− + ̺0,+)
+ a̺20,− + a̺20,+ + γ̺0,−̺0,+ + f id
′
l (β, ̺− ̺0)}. (20)
Theorem 2.
f(β, ̺) = f̃(β, ̺). (21)
Proof. Let Ĥ
(N)
l and H̃
(N)
l be the restrictions of the self-adjoint operators Ĥl and H̃l defined
on D ⊂ FB to the N-particles symmetrized Bose-space. In this case the following well-known
Bogolyubov inequalities for free energies,
〈
∆H
(N)
l
Vl
〉
Ĥ
(N)
l
(̺)
6 fl(β, ̺) − f̃l(β, ̺) 6
〈
∆H
(N)
l
Vl
〉
H̃
(N)
l
(̺)
, (22)
43003-5
M. Corgini, D.P. Sankovich
hold, where ∆H
(N)
l = Ĥ
(N)
l − H̃
(N)
l , 〈−〉
Ĥ
(N)
l
(̺)
, 〈−〉
H̃
(N)
l
(̺)
are the Gibbs states in the canonical
ensemble associated with the Hamiltonians Ĥ
(N)
l , H̃
(N)
l , respectively.
Being ∆n̂0 = n̂0,+ − n̂0,−, this leads to the following inequalities,
fl(β, ̺) > f̃l(β, ̺)−
a
V 2
l
∑
p,σ
〈n̂p,σ〉Ĥ(N)
l
(̺)
+
O(V −s
l )
Vl
〈∆n̂0〉Ĥ(N)
l
(̺)
, (23)
fl(β, ̺) 6 f̃l(β, ̺)−
a
V 2
l
∑
p,σ
〈n̂p,σ〉H̃(N)
l
(̺)
+
O(V −s
l )
Vl
〈∆n̂0〉H̃(N)
l
(̺)
. (24)
Noting that,
lim
Vl→∞
1
V 2
l
∑
p,σ
〈n̂p,σ〉Ĥ(N)
l
(̺)
= lim
Vl→∞
1
V 2
l
∑
p,σ
〈n̂p,σ〉Ĥ(N)
l
(̺)
= 0, (25)
and
lim
Vl→∞
O(V −s
l )
Vl
〈∆n̂0〉Ĥ(N)
l
(̺)
= lim
Vl→∞
O(V −s
l )
Vl
〈∆n̂0〉H̃(N)
l
(̺)
= 0, (26)
we obtain
lim
Vl→∞
fl(β, ̺) = lim
Vl→∞
f̃l(β, ̺) = lim
Vl→∞
inf
̺0,−,̺0,+∈[0,̺]
hl(̺, ̺0,−, ̺0,+). (27)
This completes the proof.
This result enables us to derive an explicit expression for the limit pressure p(β, µ) given by
p(β, µ) = lim
Vl→∞
pl(β, µ).
Let q(x, y) : R2 → R be the symmetric quadratic form defined by,
q(x, y) = (µ+ λ)(x + y)− a(x2 + y2)− γxy. (28)
Let A =
{
µ ∈ R : q∗ = sup
x,y∈[0,∞)
q(x, y) < ∞
}
.
Definition 1. The domain of stability D(p) of p(β, µ) is defined as,
D(p) =
{
(β, µ) ∈ R
2 : β > 0, µ ∈ A ∩ (−∞, 0]
}
. (29)
Corollary 1. For (β, µ) ∈ D(p),
p(β, µ) = sup
̺0,−,̺0,+∈[0,∞)
{(µ+ λ)(̺0,− + ̺0,+)− a(̺20,− + ̺20,+)− γ̺0,−̺0,+}+ pid
′
(β, µ). (30)
Proof. Since f(β, ̺) is a convex function of ̺, its Legendre transform coincides with the grand
canonical limit pressure p(β, µ), i.e.,
p(β, µ) = sup
̺>0
{µ̺− f(β, ̺)} = sup
̺>0
{µ̺− f̃(β, ̺)}. (31)
Therefore
p(β, µ) = sup
̺>0
{
µ̺− inf
̺0,−,̺0,+∈[0,̺]
{
− λ(̺0,− + ̺0,+) + a(̺20,− + ̺20,+)
+ γ̺0,−̺0,+ + f id
′
(β, ̺− ̺0)
}
= sup
̺>0
sup
̺0,−,̺0,+∈[0,̺]
{
(µ+ λ)(̺0,− + ̺0,+)− a̺20,− − a̺20,+
− γ̺0,−̺0,+ − f id
′
(β, ̺− ̺0) + µ(̺− ̺0
}
}
= sup
̺0,−,̺0,+∈[0,∞)
{
(µ+ λ)(̺0,− + ̺0,+)− a(̺20,+ + ̺20,+)− γ̺0,−̺0,+
}
+ pid
′
(β, µ). (32)
43003-6
Model of Bose-atoms with internal structure
This corollary implies that, the derivation of the limit pressure and demonstration of the oc-
currence of non-conventional Bose-Einstein condensation (independent of temperature) can be
reduced to the study of the occurence of extreme values of the symmetric quadratic form q given
in equation (28).
Proposition 1. q∗ = sup
x,y∈[0,∞)
q(x, y) satisfies q∗ = +∞, for γ ∈ (−∞,−2a) , µ ∈ (−λ, 0].
q∗ =
{
0, µ ∈ (−∞,−λ],
+∞, µ ∈ (−λ, 0],
for γ = −2a.
q∗ =
{
0, µ ∈ (−∞,−λ],
(µ+λ)2
2a+γ , µ ∈ (−λ, 0],
for γ ∈ (−2a, 2a).
q∗ =
{
0, µ ∈ (−∞,−λ],
(µ+λ)2
4a , µ ∈ (−λ, 0],
for γ ∈ [2a,∞).
Proof. Let us introduce some basic notions concerning minimization and maximization of convex
and concave quadratic functions. Let f : Rn → R be the quadratic form given by:
f(x) =
1
2
xQxT + cxT,
where Q is a symmetric n × n- matrix of real entries and c ∈ Rn. The function f is a convex
(concave, respectively) function if and only if it is a symmetric and positive (negative,respectively)
semidefinite function, i.e. xQxT > 0, (xQxT 6 0, respectively) for all x ∈ Rn. Then, being f a
convex (concave, respectively) function it attains its global minimum (global maximum, respec-
tively) at x∗ if and only if x∗ solves the equations system ∇f(x) = QxT + c = 0. In this case the
Hessian matrix H(x) satisfies H(x) = Q.
For the quadratic form q(x, y) given by equation (28) we have
Q = −
(
2a γ
γ 2a
)
, c = (µ+ λ)(1, 1).
Therefore, q is a strictly concave function (xQxT < 0) if a, γ satisfy the following condition:
detQ =
∣
∣
∣
∣
2a γ
γ 2a
∣
∣
∣
∣
= −4a2 + γ2 < 0,
i.e., γ ∈ (−2a, 2a), and it is a strictly convex function (xQxT > 0) if
detQ = −4a2 + γ2 > 0,
i.e., γ ∈ (−∞,−2a) ∪ (2a,∞).
The same results can be obtained by using the standard approach based on second derivatives
to study the functions of two variables.
We define the auxiliary quadratic forms q1, q2, q3 by
q1(x, y) =(µ+ λ)(x + y)− a(x− y)2,
q2(x, y) =(µ+ λ)(x + y)− a(x+ y)2,
q3(x, y) =(µ+ λ)(x + y)−
γ
2
(x+ y)2.
43003-7
M. Corgini, D.P. Sankovich
a) Case µ ∈ (−∞,−λ] (µ+ λ 6 0).
For µ satisfying the condition above we have, q1(x, y) 6 0, q2(x, y) 6 0 for all x, y ∈ [0,∞)
and sup
x,y∈[0,∞)
q1(x, y) = sup
x,y∈[0,∞)
q2(x, y) = 0. On the other hand, for γ > 0, q3(x, y) 6 0 for
all x, y ∈ [0,∞) and sup
x,y∈[0,∞)
q3(x, y) = 0.
If γ ∈ (−∞,−2a) and x ∈ [0,∞), the following inequality holds
q∗ > q(x, x) = (µ+ λ)2x− (2a+ γ)x2.
Since −(2a+ γ) > 0, we get lim
x→+∞
q(x, x) = +∞. Then, q∗ = +∞.
If γ = −2a and x, y ∈ [0,∞), we have q(x, y) = q1(x, y). Then q∗ = 0.
If γ ∈ (−2a, 2a) and x, y ∈ [0,∞), the following inequalities,
q2(x, y) 6 q(x, y) 6 q1(x, y)
hold, leading to the conclusion that q∗ = 0.
For γ ∈ [2a,+∞) and x, y ∈ [0,∞) we obtain,
q3(x, y) 6 q(x, y) 6 q2(x, y),
which finally implies that q∗ = 0.
b) Case µ ∈ (−λ, 0] (µ+ λ > 0).
In this case, for γ ∈ (−2a, 2a), q is a concave function, taking a global maximum at x∗ =
y∗ = (µ+λ)/(2a+γ), for (x, y) ∈ [0,∞)× [0,∞). Then, using these results and equation (28)
we get q∗ = (µ+ λ)2/(2a+ γ).
For γ ∈ (−∞,−2a], x ∈ [0,∞), taking into account that µ+ λ > 0, −(2a+ γ) > 0, we have,
q∗ > q(x, x) = (µ+ λ2)2x− (2a+ γ)x2
> 0.
Then, noting that lim
x→+∞
q(x, x) = +∞, we obtain q∗ = +∞.
For γ ∈ [2a,∞) and x, y ∈ [0,∞), the following inequality holds,
q(x, y) 6 q2(x, y).
It is not hard to see that, sup
x,y∈[0,∞)
q2(x, y) = (µ+ λ)2/4a, i.e.,
q∗ 6
(µ+ λ)2
4a
.
Since for x∗ = (µ+ λ)/2a, y∗ = 0 the quadratic form q satisfies q(x∗, 0) = (µ+ λ)2/4a, we
conclude that q∗ = (µ+ λ)2/4a.
The above results completely determine D(p), and lead to the following theorem.
Theorem 3. For (β, µ) ∈ D(p) the limit pressure is given by
p(β, µ) = q∗ + pid
′
(β, µ). (33)
43003-8
Model of Bose-atoms with internal structure
4. Non-conventional BEC
From theorem 3 one easily deduces the following corollary on non-conventional BEC.
Corollary 2. Let ρ0(µ) = ρ0,−(µ) + ρ0,+(µ) be the total amount of condensate.
i.) For µ ∈ (−∞,−λ],
ρ0(µ) = 0
if γ ∈ [−2a,∞).
ii.) For µ ∈ (−λ, 0],
ρ0(µ) =
{
2(µ+λ)
2a+γ , γ ∈ (−2a, 2a),
2(µ+λ)
4a , γ ∈ [2a,∞).
Non-conventional BEC takes place only for µ ∈ (−λ, 0] provided that (β, µ) ∈ D(p). Moreover,
the term representing interstate collisions satisfies:
lim
Vl→∞
〈
n̂0,−n̂0,+
V 2
l
〉
Ĥl(µ)
=
(
µ+λ
2a+γ
)2
, γ ∈ (−2a, 2a),
0, γ ∈ [2a,∞).
For µ, λ fixed, with µ ∈ (−λ, 0], the total amount of condensate
ρ0 : (−2a,+∞) →
[
µ+ λ
2a
,+∞
)
as function of γ is a decreasing function, satisfying lim
γ↓−2a
ρ0 = +∞, lim
γ↑2a
ρ0 = (µ+ λ)/2a and
taking the constant value (µ+ λ)/2a when γ ∈ [2a,+∞). This behavior is a direct consequence of
the fact that the symmetric quadratic form q is a strictly concave function for γ ∈ (−2a, 2a) and
becomes a convex function for γ ∈ (−∞,−2a) ∪ (2a,+∞).
Hamiltonian (1) can be rewritten in the following form,
Ĥl =
∑
p∈Λ∗
l
,σ
λl(p, σ)n̂p,σ +
(
2a+ γ
2Vl
)
(n̂2
0,− + n̂2
0,+)
−
γ
2Vl
(n̂0,− − n̂0,+)
2 −
a
Vl
(n̂0,− + n̂0,+) +
a
Vl
∑
p∈Λ∗
l
\{0},σ
(â†p,σ)
2â2p,σ . (34)
For µ ∈ (−λ, 0] and γ ∈ (−2a, 2a), in the thermodynamic limit, only the term
(
2a+ γ
2Vl
)
(n̂2
0,− + n̂2
0,+)
contributes to the emergence of non-conventional BEC. In this sense, under those restrictions,
our model is thermodynamically equivalent to the system whose energy is represented by the
Hamiltonian,
Ĥ
(1)
l =
∑
p∈Λ∗
l
,σ
λl(p, σ)n̂p,σ +
(
2a+ γ
2Vl
)
(n̂2
0,− + n̂2
0,+) +
a
Vl
∑
p∈Λ∗
l
\{0},σ
(â†p,σ)
2â2p,σ . (35)
On the other hand, for µ ∈ (−λ, 0] and γ ∈ [2a,+∞), the model under study is thermodynam-
ically equivalent to the model given by the following Hamiltonian,
Ĥ
(2)
l =
∑
p∈Λ∗
l
,σ
λl(p, σ)n̂p,σ +
a
Vl
(n̂2
0,− + n̂2
0,+) +
a
Vl
∑
p∈Λ∗
l
\{0},σ
(â†p,σ)
2â2p,σ . (36)
43003-9
M. Corgini, D.P. Sankovich
Quantum many-particle systems associated with energy operators given by equations (35)
and (36) have been extensively studied in [1, 7–9] and references therein.
Adapting results in [6], it is easy to verify that for d > 2, the models of the type given by
equations (35) and (36) undergo generalized BEC in the following sense,
lim
δ→0+
lim
Vl→∞
∑
{p∈Λ∗
l
:0<||p||<δ,σ=±}
〈
n̂0,σ
Vl
〉
Ĥl(µ)
=
{
0, ρ 6 ρPc (β),
ρ− ρPc (β), ρ > ρPc (β)
where,
ρPc (β) =
2
(2π)d
∫
Rd
(eβ
p2
2 − 1)−1dp
is the critical density of the perfect Bose gas (Bose-atoms with internal two-level structure).
In this sense, for the model under study, conventional condensate coexists at µ = 0 with the
non-conventional condensate (see [6]).
From a physical point of view the above facts imply that for γ ∈ [2a,+∞), the interstate
collisions term does not play any role in the thermodynamic behavior of the system and non-
conventional BEC is only the consequence of the presence of intrastate collisions (self-scattering
term). However, for γ ∈ (−2a, 2a), non-conventional BEC is enhanced by the presence of a cross-
scattering term (for example, the case of a cross-scattering term with a negative coupling parameter
γ close to −2a).
5. Conclusion
We have made use of a strategy based on the derivation of the limit free canonical energy
(see [3]) to obtain an analytic expression for the limit pressure of a system of Bose atoms whose
ground state has two internal levels. We have proved that negative ground state energies, for a
range of values of the chemical potential, leads to non-conventional BEC, being the amount of
condensate as a function depending on the variables γ, a associated with the interstate collisions
and intrastate collisions. In this way we recover the previous results obtained in the framework of
the approximating Hamiltonians method [1].
Acknowledgements
Partial financial support by PBCT–ACT13 (Stochastic Analysis Laboratory, Chile) and Pro-
grama de Maǵıster en Matemáticas, Universidad de La Serena, Chile.
References
1. Corgini M., Rojas-Molina C., Sankovich D.P., Int. J. Mod. Phys. B, 2008, 22, 4799–4815.
2. Bogolyubov N.N, Lectures on Quantum Statistics: Quasiaverages, Vol. 2, Gordon and Beach, New
York, 1970.
3. Lewis J.T., Mark Kac Seminar on Probability and Physics: The Large Deviation Principle in Statistical
Mechanics, syllabus 17, Centrum voor Wiskunde en Informatica (1985–1987) (Amsterdam: Centrum
voor Wiskunde en Informatica CWI).
4. Pulé J.V., Zagrebnov V.A., J. Math. Phys., 2004, 268, 3565–3583.
5. Buffet E., Pulé J.V., J. Math. Phys., 1983, 24, 1608–1616.
6. Bru J.V., Nachtergaele B., Zagrebnov V.A., J. Stat. Phys., 2002, 109, 143–176.
7. Zagrebnov V.A., Condens. Matter Phys., 2000, 3, 265–275.
8. Corgini M., Sankovich D.P., Phys. Lett. A, 2007, 360, 419–422.
9. Bru J.B., Zagrebnov V.A., J. Phys. A: Math. Gen., 2000, 33, 449–464.
43003-10
Model of Bose-atoms with internal structure
Розв’язна модель Бозе-атомiв з дворiвневою внутрiшньою
структурою: нестандартна Бозе-Айнштайнiвська
конденсацiя
М. Коргiнi1,2, Д.П. Санковiч3
1 Факультет математики, Унiверситет де Ла Серена,
Ла Серена, Чилi
2 Лабораторiя стохастичного аналiзу, Чилi
3 Математичний iнститут iм. В.А. Стєклова, Москва, Росiя
Для системи Бозе-атомiв, чий оператор енергiї є дiагональним по так званому числу операторiв i
його основний стан має внутрiшню дворiвневу структуру з негативними енергiями, отримано точнi
вирази для граничних вiльної канонiчної енергiї та тиску. Також доведено iснування нестандартної
Бозе-Айнштайнiвська конденсацiї.
Ключовi слова: метод апроксимуючого гамiльтонiана, нестандартна Бозе-Айнштайнiвська
конденсацiя
43003-11
Introduction
The model
Pressure
Non-conventional BEC
Conclusion
|