Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью
Розглядається початково-крайова задача, що описує нестаціонарні коливання пружного середовища з великою кількістю дрібних каверн, що заповнені в'язкою нестислою рідиною. Вивчається асимптотична поведінка розв'язку, коли діаметри каверн та в'язкість рідини прямують до нуля. Кількість к...
Saved in:
| Published in: | Доповіді НАН України |
|---|---|
| Date: | 2011 |
| Main Authors: | , |
| Format: | Article |
| Language: | Russian |
| Published: |
Видавничий дім "Академперіодика" НАН України
2011
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/37545 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью / М.В. Гончаренко, Н.К. Радякин // Доп. НАН України. — 2011. — № 5. — С. 7-11. — Бібліогр.: 7 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-37545 |
|---|---|
| record_format |
dspace |
| spelling |
Гончаренко, М.В. Радякин, Н.К. 2012-10-17T14:19:06Z 2012-10-17T14:19:06Z 2011 Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью / М.В. Гончаренко, Н.К. Радякин // Доп. НАН України. — 2011. — № 5. — С. 7-11. — Бібліогр.: 7 назв. — рос. 1025-6415 https://nasplib.isofts.kiev.ua/handle/123456789/37545 517.946 Розглядається початково-крайова задача, що описує нестаціонарні коливання пружного середовища з великою кількістю дрібних каверн, що заповнені в'язкою нестислою рідиною. Вивчається асимптотична поведінка розв'язку, коли діаметри каверн та в'язкість рідини прямують до нуля. Кількість каверн прямує до нескінченності та розташовуються вони ''об'ємно''. Побудовано усереднене рівняння, що описує головний член асимптотики. Це рівняння є моделлю поширення хвиль у середовищах типу зволоженого грунту, гірських порід та деяких біологічних тканин. The initial boundary-value problem of nonstationary vibrations of the elastic medium with a great number of small caverns filled by a viscous incompressible fluid is considered. The asymptotic behavior of the solution is studied as the diameters of caverns and the density of the fluid tend to zero. The number of caverns tends to infinity. It is assumed that the caverns have a volume location. The homogenized equation that describes the first term of the asymptotics is obtained. This equation is a model of wave propagation in media such as wet soil, rocks, and biological tissues. ru Видавничий дім "Академперіодика" НАН України Доповіді НАН України Математика Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью An averaged model of oscillations of the elastic medium with a lot of small caverns filled with a low-viscosity incompressible fluid Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью |
| spellingShingle |
Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью Гончаренко, М.В. Радякин, Н.К. Математика |
| title_short |
Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью |
| title_full |
Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью |
| title_fullStr |
Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью |
| title_full_unstemmed |
Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью |
| title_sort |
усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью |
| author |
Гончаренко, М.В. Радякин, Н.К. |
| author_facet |
Гончаренко, М.В. Радякин, Н.К. |
| topic |
Математика |
| topic_facet |
Математика |
| publishDate |
2011 |
| language |
Russian |
| container_title |
Доповіді НАН України |
| publisher |
Видавничий дім "Академперіодика" НАН України |
| format |
Article |
| title_alt |
An averaged model of oscillations of the elastic medium with a lot of small caverns filled with a low-viscosity incompressible fluid |
| description |
Розглядається початково-крайова задача, що описує нестаціонарні коливання пружного середовища з великою кількістю дрібних каверн, що заповнені в'язкою нестислою рідиною. Вивчається асимптотична поведінка розв'язку, коли діаметри каверн та в'язкість рідини прямують до нуля. Кількість каверн прямує до нескінченності та розташовуються вони ''об'ємно''. Побудовано усереднене рівняння, що описує головний член асимптотики. Це рівняння є моделлю поширення хвиль у середовищах типу зволоженого грунту, гірських порід та деяких біологічних тканин.
The initial boundary-value problem of nonstationary vibrations of the elastic medium with a great number of small caverns filled by a viscous incompressible fluid is considered. The asymptotic behavior of the solution is studied as the diameters of caverns and the density of the fluid tend to zero. The number of caverns tends to infinity. It is assumed that the caverns have a volume location. The homogenized equation that describes the first term of the asymptotics is obtained. This equation is a model of wave propagation in media such as wet soil, rocks, and biological tissues.
|
| issn |
1025-6415 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/37545 |
| citation_txt |
Усредненная модель колебаний упругой среды с большим количеством мелких каверн, заполненных несжимаемой жидкостью с малой вязкостью / М.В. Гончаренко, Н.К. Радякин // Доп. НАН України. — 2011. — № 5. — С. 7-11. — Бібліогр.: 7 назв. — рос. |
| work_keys_str_mv |
AT gončarenkomv usrednennaâmodelʹkolebaniiuprugoisredysbolʹšimkoličestvommelkihkavernzapolnennyhnesžimaemoižidkostʹûsmaloivâzkostʹû AT radâkinnk usrednennaâmodelʹkolebaniiuprugoisredysbolʹšimkoličestvommelkihkavernzapolnennyhnesžimaemoižidkostʹûsmaloivâzkostʹû AT gončarenkomv anaveragedmodelofoscillationsoftheelasticmediumwithalotofsmallcavernsfilledwithalowviscosityincompressiblefluid AT radâkinnk anaveragedmodelofoscillationsoftheelasticmediumwithalotofsmallcavernsfilledwithalowviscosityincompressiblefluid |
| first_indexed |
2025-12-07T18:57:01Z |
| last_indexed |
2025-12-07T18:57:01Z |
| _version_ |
1850876961899937792 |